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Abstract—Satellite data is discrete in both space and time;
it can be considered as temporal snapshots (time series) of
lattice processes. As the raw datasets are often too large to host
publicly, processed datasets with a coarse spatial resolution are
often hosted as an alternative. Nevertheless, with a regular
grid, the inhomogeneous variability in the lattice processes
cannot be captured effectively. In this paper, a quadtree-based
spatial data dimension reduction algorithm is demonstrated.
Based on the stratum variance, this algorithm iteratively
divides lattice data into strata of fours. In this way, the number
of strata in an area can be correlated to the variability of
that area. A satellite-derived surface solar radiation (SSR)
dataset is used for the case study. Using parallel computing,
the quadtree algorithm is applied on each temporal snapshot
of SSR in the dataset. The processed data is then saved in a
list structure. Finally, a solar resource assessment application,
namely, optimizing the orientation of a photovoltaic array, is
considered to demonstrate the effectiveness and efficiency of
the dimension-reduced dataset.
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I. INTRODUCTION

Satellite images, as well as their derivative products,

are rich spatio-temporal data that are valuable to a vari-

ety of domains including, but not limited to, atmospheric

sciences, oceanography and renewable energy engineering.

The characteristics of satellite data align precisely with

the well-known five Vs and the definition of Big Data

given in Ref. [1]. Certainly, with today’s data storage

technology, maintaining a database of raw data is possible

for government organizations such as NASA. However, the

raw data are often too large to host publicly, especially when

a community only requires certain parameters derived from

the raw data. In such circumstances, appropriately processed

data are preferred.

On this point, we consider surface solar radiation (SSR),

a quantity that can be derived from weather satellite images.

Solar resource assessment is a critical step in designing

and investing a photovoltaic (PV) system. Like many other

environmental quantities, SSR varies with geographical

location and time. Therefore, during the design of an SSR

database, one must consider two conflicting objectives: (1)

minimizing the size of the database and (2) capturing the

spatio-temporal variations in SSR.

In our present context, temporal variation refers to the

variability in a solar radiation time series. In some cir-

cumstances, if a time series possesses seasonal cycles, its

length could be reduced by only storing data points from

a few cycles, or data points that can typify the variation

(see Ref. [2] for the concept of typical meteorological

year). However, in the field of solar energy engineering,

although the annual and diurnal cycles can be somewhat

modeled with a double-seasonal smoothing, it is generally

recommended to consider a long enough (such as 20 years)

dataset during resource assessment [3]. For such reasons,

we do not consider temporal data compression here; this

work focuses on the spatial variability.

A simple database would record spatial data on a regular

grid. The only design parameter in this case would thus

be the grid’s spatial resolution. However, such design may

not be efficient. Consider an area under an arid climate

condition, the weather conditions in the neighboring satel-

lite image pixels are similar; a single set of temporal data

will most likely suffice for resource assessment of that

area. On the other hand, for areas such as the state of

Louisiana, which has a humid subtropical climate with

unpredictable clouds, it is reasonable to include more spatial

points (each associated with a time series) over those areas

in the database. To that end, we demonstrate a dimension

reduction technique for satellite-derived SSR data using

the variance quadtree (VQT) algorithm. A database of

SSR is constructed over an irregular grid stratified based

on the spatial variability. An application of optimizing

the PV installation orientation is used to demonstrate the

effectiveness and efficiency of the designed database.

A. Background of the Application

Conventional flat-surface solar collectors, such as PV, are

often fixed at a particular orientation (facing the Equator

and with a tilt equal to the site’s latitude) to maximize their
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Figure 1. Daily clearness index on 2004 July 4 is shown. The region of interest covers a 10◦ by 10◦ square over some states in Southern US.

energy output [4]. However, it is often found that, due to the

location-specific geographical and climatic conditions, such

conventional orientation may not be optimal; simulations

are used to further optimize the orientation and thus maxi-

mize the PV energy yield [4]–[6]. To obtain the optimal

pair of tilt and azimuth angles, a set of solar radiation

measurements at a horizontal surface is required. Using

the so-called “transposition models” [7]–[9], the horizontal

solar radiation can be projected to an arbitrary tilted plane.

Let α and β be the azimuth angle and tilt angle respectively,

the optimization problem can be written as:

argmax
α,β

T∑

t=1

Ĝc(t), (1)

where Ĝc(t) is the modeled tilted solar radiation over a time

interval t (e.g., day, hour, minute), which is a function of

α, β, Gh(t) and I(t); Gh is the global horizontal irradiance

(GHI); I is direct normal irradiance (DNI); and t =
1, · · · , T denotes the time index of a long enough horizontal

solar radiation time series. The tilted solar radiation is also

a function of the so-called “diffuse horizontal irradiance”

(DHI), denoted by Dh. As DHI can be deterministically

calculated if GHI and DNI are known, we do not include

it in (1).

There are two main ways to measure the above mentioned

irradiance components, namely, using ground-based instru-

ments and using satellite-derived data. Ground measure-

ments are accurate and have high temporal resolution. How-

ever, setting up ground sensors (pyranometer for GHI and

pyrheliometer for DNI) everywhere is costly and thus not

practical for constructing a worldwide radiation database.

Satellite-derived solar radiation thus becomes the major

tool for solar resource assessment applications. As satellite-

derived radiation data are often biased, site adaptation1 is

required. However, site adaptation is not within the scope

of this paper; we refer interested readers to Ref. [10] for a

detailed review.

B. The SUNY Data

The State University of New York (SUNY) gridded

satellite-derived database, or SUNY database in short, is

developed by Richard Perez [11]. The model used to derived

the data is one of the most widely used operational satellite-

based radiation models. The basic principle of this model

is monitoring the dynamic range of the satellite image

pixels and assigning radiation values based on the bright-

ness of the pixels. The SUNY database contains hourly

estimates of GHI, DHI and DNI data over a 10 km grid

(about 0.1◦ in latitude and longitude) for all states in the

United States except for Alaska, where satellite cannot

resolve cloud information. The database covers a period

of 12 years from 1998 to 2009. The original database

is over 60 GB and can be obtained freely available at

ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar.

As the goal of this paper is to demonstrate the VQT algo-

rithm, we only consider a spatio-temporal subset of the data,

from the year 2004, covering an area (100×100 pixels) in

Southern United States (see Figure 1). In principle, the VQT

can be applied to each hourly snapshot of SSR. However,

the difference in sunrise time and the bell-shaped diurnal

1The term “site adaptation” is used to refer to the improvement that can
be achieved in satellite-derived radiation data when ground measurements
are used to correct the bias in the original dataset [10].
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Figure 2. An illustration of the variance quadtree algorithm. The background heat map shows the daily clearness index over the area of interest on 2004
July 4. The strata generated by VQT at iterations 1, 2, 3, 10, 25 and 100 are shown.

trend in SSR affect the stratum variance calculation and

thus the variability. On that note, VQT is applied on daily

clearness index, a normalized measure of SSR (the ratio

between the actual radiation and the radiation just outside

of the Earth’s atmosphere). The value of the clearness index

ranges from 0 to 1. In this way, the strata are divided

based only on the “intrinsic” spatial variability of SSR.

Nevertheless, hourly SSR data will be used to optimize the

PV orientation in our application (see Section III). Figure 1

shows the daily clearness index on 2004 July 4 over the

area of interest. It can be seen that some areas, such as the

bottom-left corner, are less variable than other areas.

II. VARIANCE QUADTREE

The variance quadtree algorithm was designed for spatial

sampling problem; its earliest application was to sample the

normalized difference vegetation index [12]. The algorithm

is described as follows:

1) Encapsulate the spatial data in a rectangular box.

2) Split the framed area into four equally partitioned

strata. For each stratum h, a variability measure called

stratum variance, Qh is calculated:

Qh =
√
n2

h × γ̄(Ah, Ah) (2)

where Ah is the area of the stratum h; nh is the total

number of pixels in the statum; and γ̄(·) is the average

semivariance of that stratum. For discrete points si,

where i = 1, 2, · · · , nh, γ̄(·) is calculated by:

γ̄(Ah, Ah) =
1

n2

h

nh∑

i=1

nh∑

j=1

γ(si − sj) (3)

where γ(si − sj) = [z(si) − z(sj)]
2 and z(·) is the

parameter of interest.

3) Based on all the Qh values available at the current

iteration, the stratum with the largest Qh is further

split into four smaller strata with equal size.

4) Repeat step 3 until the algorithm satisfies some stop-

ping criteria.

The iteration procedure of VQT is illustrated in Figure 2.

The clearness index data on 2004 July 4 is plotted as a heat

map. The strata produced by VQT at iterations 1, 2, 3, 10,

25 and 100 are shown. After the first iteration, the top-left

stratum is found to have the highest variability; it is thus

split into four new strata. After the algorithm is stopped at

the 100th iteration, we can see that the bottom-left strata

are the biggest over the area of interest. This agrees with

our earlier observation, namely, the bottom-left corner has

small variability.
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Figure 3. More examples of strata generated by the VQT algorithm.

Using the VQT algorithm, we can generate the stratified

data for each temporal snapshot of the clearness index

process, i.e., we repeat the procedure shown in Figure 2

366 times (2004 is a leap year). For each snapshot, the

algorithm stops after 100 iterations. It is noted that other

stopping criteria can be employed, however, we leave that

to future discussions. Figure 3 provides addition examples

of the VQT. The data from the first day of each quarter of

the year are shown. It can be seen that the VQT is dynamic.

This distinguishes our present application of VQT from the

previous ones, where VQT was used for spatial sampling

design tasks [12]–[14].

The strata generated by the VQT algorithm can be saved

as a list object. Each item in the list comprises information

of a particular temporal snapshot. It should be pointed out

that at iteration i, the number of strata is 3i + 1. Each

stratum is bounded by 4 corners which can be represented

by 4 floating-point numbers (2 longitudes and 2 latitudes).

Together with the 24 hourly GHI values and 24 DNI values

averaged over each stratum, the total number of floating-

point numbers to save an ith iteration VQT is thus 52×(3i+
1). When i is smaller than a few hundreds, which would be

sufficient for most applications, the VQT representation of

the spatial data requires much less storage space than the

raw data. In our case study here, the raw data has a size of

140 MB, whereas the dimension reduced dataset only takes

5.5 MB.

III. APPLICATION

In this section, the application of optimizing the PV

orientation is tested on both the dimension-reduced and

raw datasets. To determine the optimal PV orientation (tilt

and azimuth angle) at a location, we need to solve the

maximization problem described in (1). Recall that Gc(t)
can be modeled as a function of α, β, Gh(t) and I(t), and

there are many choices of this function. For instance, if

the classic isotropic transposition model [15] is employed,

Gc(t) can be expressed as:

Gc(t) = I(t) cos θ(t)+
1 + cosβ

2
Dh(t)+

0.2(1− cosβ)

2
Gh(t),

(4)

where θ(t) denotes the average solar incidence angle over

a time interval t, which can be calculated if α and β are

known; and Dh(t) = Gh(t)− I(t) cosZ(t), where Z(t) is

the average zenith angle over t. For a general description

on the modeling of Gc(t), we refer the readers to Ref. [7].

The maximization problem is solved using the general-

purpose optimization routine (function optim) in R [16].

For every pixel of the selected area, the maximization is

performed twice using Gh and Dh values before and after

VQT, respectively. Parallel computing is used to speed up

the process. The optimal α and β values are recorded as the

maps shown in Figure 4. From a visual comparison, we can

conclude that the optimal orientation maps produced from

the dimension-reduced dataset agree well with the ones

produced from the raw data. In terms of percentage root-

mean-square error (RMSE), the RMSEs for α and β are

0.54% and 0.95%, respectively. These errors are negligible

considering the data uncertainties.

IV. CONCLUSIONS AND FUTURE WORKS

A quadtree-based spatial data dimension reduction algo-

rithm is applied on a satellite-derived surface solar radiation

dataset. The VQT algorithm iteratively stratifies the space

into strata of fours. By using the VQT algorithm, the orig-

inal 140 MB of data is reduced to 5.5 MB; the dimension-

reduced dataset can perform solar resource assessment

tasks, or more specifically, optimize PV orientation, with

negligible errors.

In the current version of the algorithm, a fixed-step stop-

ping criterion (after 100 iterations) is used. Other stopping

criteria should be considered in the future. Furthermore,

more elaborate transposition modeling can be employed to

improve the accuracies of solar resource assessment.

To promote the uptake of our results, the R code and

datasets used in this paper are provided and can be obtained

by contacting the corresponding author.
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Figure 4. Comparison of optimal PV orientation maps before and after applying the VQT algorithm for data compression.
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