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Abstract—Coordination across a supply chain creates win-
win situation for all players in that supply chain; we address
the benefits, in terms of forecast accuracy, of reconciling
demand forecasts across a supply chain. In Part III of this
three-part paper, we continue our discussion on optimal
reconciliation of forecasts. Two contributions are made in
this paper: 1) the grouped reconciliation technique is used
to address the forecast inconsistency in situations when more
than one hierarchy can be defined in a supply chain, and 2)
minimum trace (MinT) estimator is used to further improve
the reconciliation accuracy on top of the weighted least square
(WLS) approach, which was used in the earlier parts of
this three-part paper. Following the earlier works, the same
set of fast moving consumer goods data is used here. The
current results are compared to the previous ones. It is shown
that the MinT reconciliation technique outperforms the WLS
approach, which has been previously identified as the best
reconciliation technique for the data from the bottled juice
category in the Dominick’s Finer Food dataset.
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I. INTRODUCTION

From an operational point of view, coordination across a

supply chain often creates win-win situation for all players

in that supply chain. Such coordination not only refers

to the flow of materials, but also refers to the flow of

information. Integrating demand related information across

a supply chain is an interesting topic in modern sales

and operations planning. In this paper, we continue our

discussion on demand forecasting for fast moving consumer

goods (FMCG); a pair of companion papers (Part I and Part

II) published earlier contained background information on

this topic [1], [2].

FMCG demand can be considered as a hierarchy;

the number of levels in the hierarchy and the aggre-

gation/disaggregation interpretation may vary accordingly.

As an example, consider the case where a manufacturer

ships several products to various distributors, the individual

distributor’s demand of a particular product aggregates up

in the hierarchy to the total (manufacturer level) demand

of that product. As both the manufacturer and distributors

ought to produce their own demand forecasts based on

their “optimal” approaches, may them be econometrics,

machine learning or even qualitative forecasting methods,

the forecasts in the hierarchy are most likely to be aggre-

gate inconsistent. In other words, the distributors’ demand

forecasts do not necessarily add up to the manufacturer’s

forecasts. The main goal of Ref. [2] was to address this

forecast aggregate inconsistency through reconciliation (see

below).

Although various forecast reconciliation techniques dis-

cussed in Ref. [2] could address aggregate inconsistency

by revising all forecasts in a hierarchy, the hierarchical

reconciliation does not explain the disagreement in fore-

casts made using different hierarchies. The hierarchy in

the above-mentioned example is known to have a product

grouping (see top plot of Figure 1); the middle level is

represented by the total demand of each product. Simi-

larly, an alternative hierarchy could be defined based on

geographical grouping (see bottom plot of Figure 1). If

two sets of reconciled forecasts are made using these two

hierarchies, there is little reason, if not no reason, to believe

that these forecasts would be identical. This motivates the

discussion in this paper, i.e., grouped time series forecast

reconciliation. However, before we discuss that, a brief

review of the earlier companion papers is provided.

A. Review of Part I and Part II

In Ref. [1], several visualization techniques were intro-

duced specifically for FMCG demand time series. In a big

data environment, thousands, or even millions, of demand

time series co-exist and interact with each other. Some

traditional time series visualization approaches, such as

overlaying various time series on a same plot (the spaghetti

plot), are not scalable. On this point, kite diagrams were

used to visualize a moderate number of time series; a

few hundreds of time series can be compared at once.

Furthermore, additional information such as missing data

points and data points with zero sales can also be visualized

in parallel. Ref. [1] also considered a PCA-based plot to

visualize a large number of time series based on time series

features (e.g., trend, seasonality, linearity). As features of

a time series can be designed based on needs, this visu-

alization technique can be used for outlier detection and
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forecasting model selection. It is well known that exogenous

factors such as price and promotional information influence

demand; another visualization using step functions was

proposed to identify factors that correlate with demand. One

of the main goals of Part I is to conduct exploratory analyses

on the Dominick’s Finer Food (DFF) dataset; and thus we

designed our data preprocessing steps specific to the DFF

dataset. After preprocessing, demand, price and promotion

index time series, each containing 377 weekly data points,

from 37 UPCs were prepared for Part II.

In Ref. [2], three hierarchical reconciliation techniques,

namely, the bottom-up (BU), optimal reconciliation with

ordinary least squares (OLS) and weighted least squares

(WLS) estimators, were used to reconcile the base forecasts

generated by various forecasting algorithms. The term base

forecast is used to refer to those forecasts generated (in-

dependently) by different players in the supply chain. Let

the vector of the h-step-ahead base forecasts be Ŷt(h), all

reconciliation method can be written as [3]:

Ỹt(h) = SP Ŷt(h), (1)

where Ỹt(h) is the vector of the final revised forecasts; S is

the summing matrix (more details below); and P is a ma-

trix of choice, indicating various reconciliation techniques.

While the bottom-up reconciliation treats forecasts at upper

levels as the arithmetic sum of bottom-level forecasts, the

optimal reconciliation techniques consider the regression

[4]:

Ŷt(h) = Sβt(h) + εh, (2)

where βt(h) is the unknown mean of the most disaggregate

series at the bottom level and εh is the reconciliation error.

Based on this regression, the optimal (minimum variance

unbiased) estimator is given by the generalized least squares

(GLS):

βGLS
t (h) = (S�

Σ
†
hS)

−1S�
Σ

†
hŶt(h), (3)

where Σ
†
h is a generalized inverse of the unknown recon-

ciliation error covariance Σh. As Σh is not known and had

been shown to be not identifiable [5], OLS and WLS were

used to estimate βt(h). The two estimators are given as:

βOLS
t (h) = (S�S)−1S�Ŷt(h) (4)

and

βWLS
t (h) = (S�Ŵ−1

1,DS)−1S�Ŵ−1

1,DŶt(h), (5)

respectively, where Ŵ1,D is a diagonal matrix made of

the sample variances of base forecast errors. Once the

βt(h) estimate is obtained, the reconciled forecasts can be

evaluated by substituting the estimate into Eq. (2). Using the

data of the 37 UPCs arranged in Ref. [1], Ref. [2] compared

the forecast accuracy of BU, OLS and WLS reconciliations,

as well as several univariate benchmarking models. It was

found, in terms of the mean absolute percentage error

(MAPE), the WLS optimal reconciliation performed the

best among all methods.

B. Contributions

As mentioned earlier, one of the goals of this paper is to

introduce the grouped reconciliation methods, so that the

forecasts produced using different hierarchies (product or

geographical groupings) can be consistent. While hierarchi-

cal forecasting has been applied to a variety of problems

[6]–[9], the grouped time series forecasting is less known.

To the best of our knowledge, such grouped reconciliations

have only been applied to forecast infant mortality rate

[10] and Australian labour market [11]. In this paper, we

consider such grouped reconciliations for FMCG demand

forecasting.

Another contribution of this paper is on the reconciliation

technique itself. Instead of using OLS and WLS on grouped

time series, another estimator is considered, namely, the

minimum trace (MinT) estimator. This estimator minimizes

the trace of the error1 covariance, thus making it optimal

in terms of minimum variance. In a later section, both

MinT and WLS reconciliations will be used to forecast

both grouped and hierarchical FMCG demand. The rest

of the paper is organized as follows: Section II introduces

formulation of the grouped reconciliation and various esti-

mators for the reconciliations. Section III updates the results

of our case study, namely, the 1-week-ahead forecast for

the FMCG demand dataset that was used in Refs. [1], [2].

Conclusions follow at the end.

II. GROUPED RECONCILIATION

In this section, grouped reconciliation methods will be

discussed based on the illustrative example shown in Fig-

ure 1. In hierarchical reconciliation, the summing matrix S

contains the structural information of a hierarchy. Similarly,

in grouped reconciliation, the summing matrix describes

the structures of several possible groupings, simultaneously.

Based on the two hierarchies shown in Figure 1, we define

a vector containing the bottom-level data:

bt = (yU1S1,t, yU1S2,t, · · · , yU3S3,t)
�, (6)

where yUiSj,t denotes the demand at time t for UPC i at

store j. We can then write the following:

Yt = Sbt (7)

1The error here refers to the h-step-ahead reconciled forecast error.
Several other errors will be discussed in Section II.
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Total

U1

U1S1 U1S2 U1S3

U2

U2S1 U2S2 U2S3

U3

U3S1 U3S2 U3S3

Product Grouping

Total

S1

U1S1 U2S1 U3S1

S2

U1S2 U2S2 U3S2

S3

U1S3 U2S3 U3S3

Geographical Grouping

Figure 1. The hierarchy of demand time series can be grouped based on UPC (product grouping) or store (geographical grouping).

where

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

and

Yt = (ytotal,t, yU1,t, yU2,t, yU3,t, yS1,t, yS2,t, yS3,t, b
�
t )

�.

(9)

It can be seen that the summing matrix of grouped time

series contains additional rows than the summing matrix of

hierarchical time series. From the above equations, we can

see how the bottom-level series aggregate up according to

the ones and zeros in S. Using the grouped reconciliation,

the reconciled forecasts will not only be aggregate consis-

tent for a single hierarchy, but for all hierarchies described

by the summing matrix. When the supply chain structure

gets more complex, and more hierarchies can be defined

(such as manufacturer grouping), the summing matrix can

be expanded accordingly.

The regression approach for optimal hierarchical fore-

casts reconciliation shown in Eq. (2) is also applicable

to grouped reconciliation. In other words, the three rec-

onciliation techniques described in Ref. [2] can be used

“as is” in this work. Nevertheless, the literature of hierar-

chical/grouped time series forecasting has advanced since

the publication of Refs. [1] and [2]; we update those

methodological improvements in this work as well.

A. The MinT estimator

The error term in Eq. (2), εh, is known as the reconcilia-

tion error; it describes the aggregate inconsistency observed

in the base forecasts. However, Ref. [4] confused this error

with the h-step-ahead reconciled forecast error [5]. On this

point, two other errors need to be defined, namely, the h-

step-ahead reconciled forecast error:

ẽt(h) = Yt+h − Ỹt(h), (10)

and the h-step-ahead base forecast error:

êt(h) = Yt+h − Ŷt(h). (11)

In Ref. [5], the authors expressed the covariance of ẽt(h)
in terms of the covariance of êt(h) through the following

lemma:

Lemma 1 (Wickramasuriya): For any P such that

SPS = S, the covariance matrix of the h-step-ahead

reconciled forecast errors is given by

Var[Yt+h − Ỹt(h)] = SPWhP
�S� (12)

where Ỹt(h) is given by Eq. (1) and Wh = E[êt(h)ê
�
t (h)]

is the covariance matrix of the h-step-ahead base forecast

errors. (end of lemma)
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In addition, the authors also proposed the following theo-

rem:

Theorem 2 (Minimum trace): Let Wh be the positive

definite covariance matrix of the h-step-ahead base forecast

error. Then the optimal reconciliation matrix, which mini-

mizes the trace of SPWhP
�S� such that SPS = S, is

given by

P =
(
S�W−1

h S
)−1

S�W−1

h . (13)

(end of theorem)

As the aim of the reconciliation is to make better forecast,

reconciled forecasts that minimize the sum of the forecast

variances (trace of Var[ẽt(h)]) are desired. The optimal

reconciliation approach described in Theorem 2 is referred

to as the MinT approach. MinT gives the best (minimum

variance) linear unbiased reconciled forecasts. Together

with Lemma 1, P can be estimated in terms of the summing

matrix S and the covariance matrix of êt(h), namely, Wh.

Consequently, the reconciled forecasts using MinT are given

by:

Ỹ MinT
t (h) = S

(
S�W−1

h S
)−1

S�W−1

h Ŷt(h). (14)

B. The alternative MinT estimators

Although Wh does not suffer from a lack of identifiabil-

ity, it is nevertheless difficult to estimate. In Ref. [5], several

alternative MinT estimators were discussed. We consider

two alternatives in this paper.

If we set Wh = khdiag(Ŵ1) = khŴ1,D, where kh is

positive and Ŵ1 is the sample estimator of the in-sample

1-step-ahead base forecast error covariance, the MinT esti-

mator is equivalent to the WLS estimator described earlier.

In other words, the WLS reconciled forecasts are given by:

Ỹ WLS
t (h) = S

(
S�Ŵ−1

1,DS
)−1

S�Ŵ−1

1,DŶt(h). (15)

As WLS estimator was shown to outperform OLS estimator

using the particular dataset in Ref. [2], OLS is not included

in this paper.

The second alternative MinT estimator considers shrink-

age. Let Wh = khŴ
∗
1,D, where Ŵ ∗

1,D = λDŴ1,D + (1−

λD)Ŵ1, the shrinkage estimator shrinks the off-diagonal

entries of Ŵ1, while the diagonal terms remain unchanged.

This approach could be used in situation where the sample

covariance estimate is not positive definite. In our case, λD

follows the shrinkage parameter proposed in Ref. [12]. The

reconciled forecasts in this case is given by:

Ỹ MinT∗
t (h) = S

(
S�Ŵ ∗−1

1,D S
)−1

S�Ŵ ∗−1

1,D Ŷt(h), (16)

and the methods is referred to as MinT* reconciliation.

III. UPDATE OF THE PREVIOUS RESULTS

Following Refs. [1] and [2], data from the Dominick’s

database is used; the dataset is provided by the James

M. Kilts Center, University of Chicago Booth School of

Business with a collaborative effort by the Dominick’s Finer

Food (DFF).

A. Previous results

Data of 37 products (UPC/product-level time series) from

the bottled juice category (BJC) were arranged in Ref. [1].

With a total of 1971 bottom-level time series, a three-level

hierarchy2 was formed in Ref. [2]. The total number of

time series in this hierarchy is thus 2009 (1+37+1971).

Using the two base forecast methods, or more specifically,

autoregressive distributed lag (ADL) model [13] for level 2

and simple exponential smoothing (SES) [14] for levels 0

and 1, the performance of three hierarchical reconciliation

techniques (BU, OLS and WLS) was evaluated in terms of

MAPE. As for each time series, the total number of weekly

demand observation is 377, data from the first 200 weeks

were used for model fitting, the remaining 177 weeks of

data were used to compute true out-of-sample MAPE with

a rolling forecast horizon (see Figure. 2). It was found that

on level 1 (UPC-level), WLS reconciliation performs the

best.

In addition to the overall MAPE, some error analyses

were also performed in Ref. [2]. In particular, it was found

that when the demand time series contains large surges (due

to promotional events and price drops), SES fails to identify

these demand surges, and thus produces high MAPE (as

high as 262%). As the results of SES will be used during

reconciliation, and the large errors will propagate to the

forecasts of other series, data of 4 UPCs with MAPE > 50%
are excluded from the computation in this paper. In other

words, we perform grouped reconciliation based on data of

33 UPCs; the total number of bottom-level series is 1712.

These 4 UPCs can be considered as time series anomalies.

We note that these time series anomalies in general should

not be included in a forecast system; removing unusual time

series or data points prior to forecasting is a commonly

adopted approach for the industry. On this point, in a big

data environment, scalable time series anomaly detection

algorithms [15] can be employed. The anomalous series can

then be treated separately with other appropriate forecasting

methods. We hope to include such discussions in a future

work.

B. Results for grouped reconciliation

In this section, 1-step-ahead (weekly) forecasts are per-

formed and evaluated at the UPC level. If the DFF dataset

2This is sometimes referred to as a two-level hierarchy, as the top level
is considered as level 0.
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Training: 1 ∼ 200 Unused: 202 ∼ 377

· · · · · ·

Training: 2 ∼ 201 Unused: 203 ∼ 377

· · · · · ·

Training:3 ∼ 202 Unused: 204 ∼ 377

· · · · · ·

Training: 4 ∼ 203 Unused: 205 ∼ 377

· · · · · ·

Training: n ∼ 376

· · · · · ·

Figure 2. Experimental design: 177 (n = 177 in this case) rolling forecasts are performed for each time series. The data point being forecast is shown
in red. The size of training window (shown in blue) is fixed at 200. This scheme was used in Ref. [2].

Time
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n

it
 s

al
es

Unit sales

Store−level demand

Figure 3. Kite plots (see Ref. [1] for interpretation) for 67 store-level demand series. Each store-level time series is the aggregate of the demand of all
BJC products (under consideration) in that store. Frequent and large spikes are observed in these time series.

is modeled as a hierarchy, the optimal (MinT) hierarchical

reconciliation can be readily calculated via Eqs. (15) and

(16), with Ŷt(1) being the vector of 1-step-ahead base

forecasts obtained in Ref. [2]. However, when the dataset

is described as grouped time series, the reconciliation still

requires those forecasts on level which contains demand

under a geographical grouping. In other words, to construct

Ŷt(1) for grouped time series, the forecasts of the total

demand in each store (for the 33 UPCs) are needed. The

raw DFF dataset contains demand information at 93 stores,

however, the filtered dataset only covers 67 stores; data from

other stores were filtered in Ref. [1]. Therefore, in the case

of grouped time series reconciliation, for each time t, the

length of Ŷt(1) is 1813 (1+33+67+1712).

The store-level demand can be forecast using any fore-

casting methods. For instance, we can employ SES to

generate base forecasts for these time series. However, as

mentioned earlier, SES may generate large errors if the
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Table I
FORECAST ERRORS (MAPE) OF 33 SELECTED UPCS FROM THE BOTTLED JUICE CATEGORY. THE ERRORS ARE IN PERCENTAGE.

UPC Product name
No. of

series

Univariate methods Hierarchical methods Grouped methods

Persistence SES Bottom-up WLS MinT WLS MinT*

1 7045011484 SUNSWEET PRUNE JUIC 48Oz 55 10.16 10.74 9.02 8.64 8.23 8.64 8.20

2 5300015154 REALEMON PLASTIC LEM 45Oz 61 11.17 9.64 9.00 8.92 8.20 8.93 8.16

3 5300015108 REALEMON LEMON JUICE 8Oz 64 15.11 13.05 10.89 10.89 11.23 10.89 11.26

4 3828103123 HH LEMON JUICE 32Oz 61 16.74 16.92 18.32 17.50 12.75 17.52 12.58

5 3828103091 HH APPLE JUICE 128Oz 66 31.81 37.66 20.92 20.86 19.40 20.86 19.40

6 3828103025 DOM APPLE JUICE 32Oz 52 39.11 41.96 21.97 21.68 27.20 21.70 28.02

7 3120027407 OS PINK GRAPEFRUIT 64Oz 42 29.99 34.58 17.61 17.52 16.15 17.50 16.13

8 3120027007 OS GRAPEFRUIT JUICE 64Oz 53 28.16 30.34 12.68 12.59 12.67 12.59 12.68

9 3120026134 OS LC CRANRASP 48Oz 52 26.11 24.66 12.26 12.33 12.31 12.32 12.30

10 3120021007 OS CRANAPPLE DRINK 64Oz 62 25.18 27.01 12.21 12.12 11.66 12.13 11.64

11 3120020035 OS LO CAL CRANBERRY 48Oz 63 21.33 20.29 10.49 10.43 10.22 10.43 10.20

12 3120020007 OS CRNBRY JCE COCKTA 64Oz 65 26.15 30.91 11.67 11.51 11.21 11.54 11.23

13 3120020005 OS CRANBERRY COCKTA 48Oz 66 34.65 50.54 12.46 12.38 15.03 12.37 15.20

14 7045011329 SUNSWEET PRUNE JUICE 32Oz 61 12.28 11.99 12.10 11.70 10.05 11.71 9.98

15 5300015132 REALEMON LEMON JUICE 32Oz 66 16.55 17.49 17.05 16.04 14.48 16.04 14.43

16 4850000193 TROP TWSTR ORGCRAN 46Oz 34 30.35 29.55 16.27 16.20 15.25 16.19 15.19

17 4180022700 WELCHS WHITE GRAPE J 64Oz 54 10.49 11.11 16.51 15.15 10.79 15.15 10.66

18 4180020750 WELCHS GRAPE JUICE 64Oz 65 11.21 11.11 14.87 13.89 10.23 13.89 10.16

19 3828103017 HH APPLE JUICE 64Oz 67 66.32 76.37 25.33 25.26 28.67 25.22 29.07

20 3828103009 HH PRUNE JUICE 40Oz 40 15.72 15.93 13.47 12.91 11.60 12.91 11.55

21 3120027005 OS GRAPEFRUIT JUICE 48Oz 39 29.75 30.56 16.69 16.60 15.69 16.59 15.72

22 3120026107 OS CRANRASPBERRY DR 64Oz 56 28.70 33.27 12.07 11.97 11.46 11.99 11.44

23 3120026105 OS CRANRASPBERRY 48Oz 45 43.58 71.13 20.12 20.34 25.18 20.08 25.39

24 3120021005 OS CRANAPPLE DRINK 48Oz 41 41.11 55.02 18.67 18.65 19.72 18.61 19.82

25 3828103115 DOM CRANBERRY RSPBRY 48Oz 7 33.58 33.57 27.12 26.60 24.30 26.60 24.25

26 3828103033 HH CRANBERRY JUICE C 48Oz 61 23.28 24.27 18.61 18.45 16.38 18.47 16.34

27 3828103005 DOM PRUNE JUICE 32Oz 41 16.49 15.89 15.48 14.63 12.37 14.64 12.30

28 3120027405 OS PINK GRAPEFRUIT 48Oz 26 31.49 36.20 19.40 19.33 18.88 19.32 18.92

29 1480000032 MOTTS APPLE JUICE P 32Oz 62 9.57 9.07 11.71 10.60 9.46 10.60 9.35

30 5300015407 REAL LIME JUICE 8Oz 7 24.35 22.16 22.72 21.44 20.89 21.44 20.86

31 7045011402 SUNSWEET PRUNE JCE W 40Oz 58 12.53 14.76 11.56 11.00 9.69 11.00 9.65

32 3120020000 OS CRANBERRY COCKT 32Oz 59 10.99 9.96 10.50 10.20 9.13 10.20 9.09

33 1480051324 MOTTS CLAMATO JUICE 32Oz 61 14.10 12.69 15.27 14.75 13.00 14.75 12.95

overall 1712 24.19 26.98 15.61 15.24 14.65 15.24 14.67

demand time series is spiky. In our present case, the store-

level demand is in fact spiky, as shown in Figure 3. This

is owning to the fact that only 37 products from BJC are

considered in the forecasting exercise. For such reason,

we use the bottom-up approach for store-level forecasts;

the respective base forecasts are simply added together to

form these store-level forecasts. It is believed that when

the number of bottom-level series increases, the store-

level demand will be smoothed out. In those cases, other

forecasting methods may be deemed as more appropriate.

At this stage, all base forecasts have been obtained;

grouped reconciliations can thus be performed. To bench-

mark the results of grouped reconciliation, three hierarchical

reconciliation techniques, namely, BU, WLS and MinT*

reconciliation, are also implemented. The hierarchy used

here is based on the product grouping; it follows the top

plot in Figure 1. The results of the two univariate forecasting

methods are reiterated as well. Table I shows the MAPE of

all methods considered in this study.

It is observed from Table I that the grouped reconciliation

does not improve forecasts in terms of MAPE as compared

to the hierarchical methods. This is due to the fact that no

new forecast information was created during the generation

of store-level demand forecasts. However, if other methods,

besides the simple aggregation of bottom-level series, are

used, the results of grouped reconciliation will be different

from those of hierarchical reconciliation. Furthermore, if

the store-level demand is sufficiently smooth, the grouped

reconciliation is expected to out-perform hierarchical rec-

onciliation due to the better forecasts available at the store-

level. On the other hand, it is clear that the MinT* approach

improves forecast accuracy on top of WLS, in both grouped

and hierarchical methods.

IV. CONCLUSION

In Part III of this three-part paper, grouped reconciliation

is used to forecast UPC-level FMCG demand. As compared

to the hierarchical reconciliation techniques used in Part II,

the grouped reconciliation techniques consider additional

hierarchy definitions. This is useful when the hierarchical

structure in a supply chain is not unique. Although in

our case study, the improvements in grouped time series

forecasts over the hierarchical forecasts are not observable,

the new forecasts are conceptually preferred, as the revised

forecasts using grouped reconciliation are aggregate consis-

tent across all hierarchies under consideration. Furthermore,
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it is hypothesized that when the number of bottom-level

time series increases, and when the higher-level time series

become more smooth, the advantage of the grouped time

series reconciliation would be clear.

Besides using grouped reconciliation, this paper also

considers the minimum trace reconciliation technique. Pre-

viously in Part II, WLS reconciliation was shown to out-

perform OLS and other benchmarking methods. It is now

shown that MinT* reconciliation could further improve

forecasts on top of WLS, making MinT* the best overall

reconciliation technique for our data presented in the case

study.

Although from the definition itself, MinT is the best

(minimum variance) linear unbiased estimator, the accuracy

of the method in application can still be limited by other

factors, such as the accuracy of base forecasts and the

error ratio between forecasts at each level. We hope to

discuss such issues in a future paper. More specifically,

it is important to know the conditions for the reconciled

forecasts to be better than the base forecasts. On top of

that, FMCG demand has strong variability due to the intri-

cate market mechanisms. Continuous development of base

forecast methods in an FMCG context is also important.
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