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Abstract—We are interested in forecasting a large collection
of FMCG demand time series. As the demand of FMCG
exists in a hierarchy (from manufacturers to distributors
to retailers), the bottom level of the hierarchy may contain
thousands or even millions of time series. Producing aggregate
consistent forecasts while utilizing the unique features from
each time series thus become a technical challenge. To achieve
better forecasting results, exploratory analysis is often neces-
sary to obtain insights on the underlying demand generating
mechanism for each time series. Exploratory analysis aims at
discovering those so-called “exogenous factors”, such as price,
demand of the complementary/substitutive goods and calendar
events, which can help explain some of the demand fluctuation.
During forecast accuracy evaluation, outlier detection is also
important; a single anomalous time series can contribute much
to the overall error. However, in a big data (such as retailing
scanner data) enabled environment, exploratory analysis and
visualization need much attention, because of the non-scalable
nature of the existing methods. Scalability is essential for
exogenous factor selection and outlier detection in big time
series data. In Part I of this two-part paper, we introduce
some exploratory analytics and visualization methods (from
not scalable to very scalable) for big retailing time series.
Forecasting of the hierarchical FMCG demand is addressed
in Part II.

Keywords-FMCG; forecasting; hierarchical reconciliation;
visualization

I. INTRODUCTION

Stock-outs have been an issue for fast moving consumer

goods (FMCG) manufacturers, distributors and retailers for

many decades [1]. Due to the non-durable nature of FMCG

products, overstock situations are also not desired. Dete-

riorating products’ prices are usually significantly reduced

to stimulate demand, which directly translates to loss of

potential profits [2]. In today’s increasingly competitive

retailing industry, enterprises seek to minimize, if not elimi-

nate, the number of stock-outs and overstocks, as stock-outs

directly affect consumer loyalty and overstocks translate to

high inventory costs and wastage. Demand forecasting is

thus essential for FMCG manufacturers, distributors and

retailers to coordinate their efforts in the supply chain

management processes to increase efficiency and improve

consumer service levels [3].
Regardless of online or in-store retailing, the volume

of demand-related data is enormous. As a result, retailing

industry is one of the pioneers in using big data. The

characteristics of the FMCG data align well with the HACE

theorem1 proposed in Ref. [4]. A typical retailer would

collect scanner data over several dimensions including

items, stores, markets, categories. These data give rise to

the demand hierarchy.
There are many ways to segregate the FMCG demand.

For example, a manufacturer produces various goods; these

goods are shipped to various distributors and thus various

retailers. In such context, the bottom level of the hierarchy

contains the demand time series for each store and for

each product. We aim to forecast such hierarchical FMCG

demand in an aggregate consistent manner. In other words,

the forecasts produced at lower levels should sum to the

forecasts produced at higher levels. For example, at dis-

tributor level, the overall demand forecasts for a particular

product are generated with a particular model. However,

the demand forecasts for the same product but at store

level are often generated with different models, as retailers

are likely to have their own forecasting practice. Since the

forecasts at retailer level are generated independently, they

may not sum up to the distributor’s forecasts. Therefore, the

aggregate inconsistency in the forecasts becomes a technical

challenge. We will address this issue in Part II of this two-

part paper [5].
Given the size of a typical FMCG supply chain, the

number of bottom-level series can easily reach an order

of millions (e.g., 1000 retailers selling 1000 products).

The big dimensionality of the data not only challenges

1Big Data starts with large-volume, heterogeneous, autonomous sources
with distributed and decentralized control, and seeks to explore complex
and evolving relationships among data [4].
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forecasting, but also poses problems for exploratory analysis

and visualization. For example, the complementary and

substitutive effects in FMCG demand is well-known; by

including these effects in forecasting models can improve

forecast accuracy [6]. However, searching and identifying

relevant exogenous predictors from millions of candidate

predictors are not trivial.

Data inspection is a prerequisite to forecasting. Detecting

anomalous time series in a big data context thus needs

attention. In ordinary time series outlier detection, identify-

ing anomalous data points from a univariate time series is

the focus. However, when the data is a collection of time

series, it is more amenable for forecasters to identify the

unusual time series. Furthermore, when we consider data as

hypercubes, i.e., each data point is associated with several

tags (see Section II), missing data handling becomes crucial.

List-wise deletion in this case may lead to unnecessary loss

of data.

Based on the aforementioned challenges, three ex-

ploratory analytics/visualization methods are demonstrated.

A tool for exploring/visualizing a single demand time series

is provided in Section III-A. We found that by overlaying

exogenous factors (such as price, promotion and calendar

events) in a strategic way, the causal effects in FMCG

demand can be studied. Section III-B introduces the so-

called “kite plot”, which is suitable for exploring/visualizing

a moderately large number of time series. Kite plots are

compact, allowing us to put many time series side by side,

and thus visually identify similar time series. Furthermore,

missing data can easily be represented within kite plot.

Last but not the least, a scalable feature-based time series

representation is shown in Section III-D. By summarizing

the each time series into a set of predefined features and thus

performing principal component decomposition, we can

project big time series data onto a low-dimensional space.

Anomalous time series, as well as the features contributing

to the anomalies, can be identified through standard multi-

dimensional outlier detection methods. Furthermore, when

the time series is represented by features, we can assign ap-

propriate forecasting models to a time series by examining

the most influential features for that time series.

II. DATA

We consider the Dominick’s database2 in this paper; the

dataset is provided by the James M. Kilts Center, University

of Chicago Booth School of Business with a collaborative

effort by the Dominick’s Finer Food (DFF). Although the

dataset records weekly historical data from 1989 to 1994,

owing to its informative nature, it is still frequently being

2The dataset is freely available at http://research.chicagobooth.edu/kilts/
marketing-databases/dominicks/.
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Figure 1. Histogram of UPC-level data availability for the bottle juice
category.

used to conduct marketing research [7], [8]. It was previ-

ously found that sales in Dominick’s database is large and

frequent [9]; the dataset thus provides a suitable platform

for our current investigation, i.e., forecasting under strong

demand fluctuation.

The dataset contains four types of files, namely, the

customer count file, store-level demographics file, universal

product code (UPC) files and movement files. As detailed

description of each file type can be found on the database

website, we do not reiterate here. Instead we provide some

insights on data preprocessing in the next section.

Store-level sales information for each UPC from 29

categories (such as beer, bottled juices, shampoos, etc) is

recorded in the movement files. The data from each category

can thus be viewed as data cubes (3-dimensional arrays)

with dimensions: time (T ), store (S) and UPC (U ). We

consider three data cubes, namely, unit price, movement

and promotion. As DFF will sometime bundle products

(e.g., 3 cans of tomato soup for $2), the unit price of a

product is obtained by dividing the raw price with quantity

of the bundle. Movement reflects the number of product

sold. Promotion indicates whether the product was sold on

promotion in a particular week. There are three types of

promotions, namely, bonus buy, coupon and simple price

reduction. As most of the promotions are the bonus buy

type, we do not distinguish types of promotion in this paper,

as per Ref. [6].

During the data preprocessing, we found that data could

be missing from any dimension, i.e., T , S and/or U .

Furthermore, the missing data from each data cube may

not locate at shared positions. Such nature of the data

creates difficulties in comparing research results, as each

individual researcher would apply different treatments for

missing data. We therefore make our data processing code
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Figure 2. Unit sales and price transients of a particular UPC over a period from 1991 August to 1995 June. The promotional index is shown in blue
(color opacity is proportional to promotional index value). Calendar events (9 public holidays in US) are shown in red.

available3 and give a brief description on our particular

preprocessing sequence.

Throughout this paper, only data from the bottled juice

category (BJC) will be used for illustrative purposes. We

acknowledge that forecast results from a single category do

not represent those from the other categories. However, the

focus here is to demonstrate the collaborative effect among

distributors and retailers; the use of data from one category

is considered sufficient. From the raw data files, the above-

mentioned data cubes are constructed; the size of each data

cube is T × S × U , where T = 399 (this is the case for

all categories), S = 93 and U = 511. The total number of

data points for each UPC is thus 37107 if no missing data

is present. As shown in Fig. 1, out of the 511 UPCs in the

BJC, only a handful of products have more than 30000 data

points. We select the 40 UPCs with most data.

III. EXPLORATORY ANALYSIS AND VISUALIZATION

The histogram filter used in Section II gives an overall

idea about the data availability. However, to obtain a deeper

understanding on the data and insights on the underlying

demand generating mechanism, detailed visualization is

required.

A. A Tool for Individual Time Series

As mentioned earlier, exogenous factors such as price

and promotion information may help predict the demand.

3Please contact the corresponding author for release of code.

If the interest is to study a single time series, it is logical

to overlay the exogenous factors together with the demand

time series itself, so that any strong correlation can be

detected visually.

In Fig. 2, the UPC-level sales of OceanSpray cranberry

juice cocktail (1 of the 40 previously identified UPCs) over

a period of ≈ 4 years is plotted using a solid black line. The

store-wise averaged price of that UPC is shown by dotted

line. The averaging weights are calculated based on all

commodity volume (ACV) of each store4. All commodity

volume is the total annual revenue of the store (available

from the “PERregress” package in R [10]). The weighted

average of the promotional index is calculated similarly5.

The weekly promotional index is shown in Fig. 2 as the

opacity of the blue stripes (less opaque indicates small

index). Lastly, the calendar events are shown by the short

orange bars at the bottom of the plot. It can be seen from

Fig. 2 that a reduction in price (due to promotion) is an

evident cause of the increase in sales. On the other hand, the

seasonality (due to both yearly and calendar events cycles)

in unit sales time series is weak. The effect of including

4For example, suppose a product is being sold on 3.5 dollars with
promotion in a store and the ACV of the store is 50 million dollars, and
it is being sold on 2.5 dollars without promotion in another store with an
ACV of 20 million dollars. The aggregated price would be 3.5×(50/70) +
2.5×(20/70) = 3.21 dollar

5For the same ACV, the averaged promotional index is 1×(50/70) +
0×(20/70) = 0.71, given I = 1 if the item is on promotion in a store and
0 otherwise.
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Figure 3. Kite diagrams for a particular UPC sold at 93 stores. The strictly non-negative store-level sales time series is flipped about x-axis to form
closed glyphs. See text for detailed interpretation.

the calendar event and monthly dummy variables during

forecasting is thus inferred to be insignificant.

We note that step functions are used in Fig. 2; such

plotting design is essential for this visualization. As demand

may not respond to the promotions and price changes

immediately, plotting using step functions allows us to

examine whether the promotions and price changes are

aligned with demand. Given a long enough time series,

without such plotting design, it is impossible to identify

any misalignment.

B. A Tool for Many Time Series

Plots like Fig. 2 consider a single or a few time series at

a time. If the number of time series gets large, the resultant

“spaghetti” is not informative. Therefore, we can employ a

so-called “kite diagram” [11] to visualize the time series.

A kite diagram uses closed, symmetric glyphs to represent

data. In this case, the glyphs are formed by flipping the

strictly non-negative sales series about the x-axis. The

space-filling representation supports time series transient

visualization for a moderately large number of time series.

In additional, markers can be used to highlight unusual data

values such as missing data and zero sales. Fig. 3 shows an

example kite diagram for store-level demand of OceanSpray

cranberry juice cocktail. The plot contains rich information

about each time series; it also helps identify time series with

similar transient, which is very likely to be useful during

forecasting. Some other observations that can be made from

Fig. 3 include store commodity values (reflected by the

width of the glyphs), promotional effect (relative magnitude

of the sales spikes) and whether the product is being sold

at a particular store (for long consecutive zero sales, the

product is most likely not being sold anymore, or if the

store is not yet open for business).

Although the kite plot is more compact than a simple

time series plot, it is still not very scalable. Arguably we can

insert more time series into the plot, however, as the number

of time series gets over a few hundred, visual identification

of similar time series becomes difficult.

C. Data Preprocessing Sequence

Before we introduce the scalable visualization tool for

big time series, based on previous visualizations, data

preprocessing sequence is first described. The processed

data will be subsequently used in Part II of this two-part

paper for forecasting.

After the histogram filter used in Section II, the total

number of store-level time series is 3720 (93×40). We thus

have three matrices of size 3720×399 for unit sales, price

and promotion. Based on the observations, a preprocessing

sequence is designed for the DFF data:

1) Fig. 3 shows that the data from last few weeks are

constantly missing across stores. A list-wise deletion

(for all three matrices) is performed if there are more

than 2000 missing values in any column (weeks) of

any matrix. The size of the matrices is 3720×387

after this step.
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Figure 4. Calculation of lumpiness for a time series of length nm. Symbol var denotes variance.

2) After step 1, it is observed that most time series do not

contain any missing value. We therefore remove the

rows (stores) with any missing value based on the unit

sales matrix. The size of the matrices is 3036×387

after this step.

3) Fig. 3 indicates (by consecutive zero sales) that a

UPC may no longer be sold at a particular store.

Time series with more than 10 consecutive zero-sales

weeks are therefore filtered. The size of the matrices

is 2409×387 after this step.

4) It is observed that zero sales may occur across the

stores for a particular UPC for a particular week. As

our aim is to consider hierarchical nature of the sales,

we remove columns (weeks) if zero sales are spanning

any UPC. The size of the matrices is 2409×377 after

this step.

5) We repeat step 2 with respect to the price matrix, i.e.,

delete the time series with any missing price. The size

of the matrices is 1991×377 after this step.

6) Spurious unit sales spikes are also observed in the

data. We consider a data point as a spike if it is 300

times more than the mean of the time series; those

time series containing any spike are removed. The

final dimensions of the matrices are 1971×377.

As our application is forecasting, our preprocessing is

designed to preserve the temporal structure as much as

possible (by sacrificing the number of bottom-level time

series). We note that the above preprocessing is ad hoc but

thorough. It also illustrates certain preprocessing difficulties

for a typical dataset.

D. A Tool for Big Time Series

In this section, we demonstrate a scalable time series

visualization technique using those 1971 time series ob-

tained after the preprocessing. Instead of considering the

time series space, we consider a feature space. A set of d

predefined features, see Table I for example, is extracted

from each time series. In other words, each time series

becomes a unit of observation in the feature space and

is described by the d-dimensional coordinates. Principal

component analysis is then applied to the features. Finally,

the exploratory visualization can be carried out through the

classic biplot [12].

Table I
VARIOUS TIME SERIES FEATURES USED IN THIS PAPER. WE NOTE THAT

THESE FEATURES ARE ADOPTED FROM REF. [13].

Feature Description
ACF1 First order of autocorrelation.
Trend Strength of trend.
Linearity Strength of linearity.
Curvature Strength of curvature
Entropy Spectral entropy.
Lumpiness Changing variance.
Spikiness Strength of spikiness.
Lshift Level shift using rolling window.
Vchange Variance change.
Fspots Flat spots using discretization.
Cpoints The number of crossing points.
KLscore Kullback-Leibler score.
Change.idx Index of the maximum KL score.

A total of 13 features (d = 13) are defined in Table I.

Some of these features are intuitive while the others may not

be straightforward to understand. For example, lumpiness is

defined as the variance of the variances of data segments

from fix-sized time windows. To calculate lumpiness, the

raw time series is first divided into n length-m data seg-

ments, see Fig. 4. The variance of each data segment is

calculated, e.g., v1 = var{y1, · · · , ym}; and lumpiness is

given by var{v1, · · · , vn}. For a more detailed description

on various features shown in Table I, we refer the readers to

Ref. [13] and the references therein. Nevertheless, the set of

features is non-exhaustive, other features could be defined

based on applications.

After the features are calculated, PCA is performed.

Fig. 5 shows the biplot of the 1971 time series. Each

number in the plot represents one time series; a point along

a particular vector is best represented by that vector. For

examples, series-1787 at the top right corner is found to

be spiky and lumpy, where as series-1219 on the left has

strong first order autocorrelation.
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Figure 5. Biplot of the 1971 time series (represented by the numbers). 13 features are extracted from each time series and used in the principal
component analysis.

IV. DISCUSSION ON THE PRINCIPAL COMPONENTIAL

BASED VISUALIZATION

As the first few principal components are usually suf-

ficient to represent most variability in the feature space

(as indicated in Fig. 5, the first two principle components

explains about 60% of the variability of data in the feature

space), this algorithm can efficiently identify the anomalous

time series with respect to all other time series in the

collection. Once the bipolar is produced, standard multi-

dimensional outlier detection algorithms such as the highest

density region method [14] and α-hull method [15] can

directly be applied.

Another potential application of the principal component

based visualization is to help identify suitable forecasting

models. Using the earlier example, series-1787 is spiky and

lumpy, a variance stabilizing step, such as the square root

transform, prior to forecasting may be useful. Series-1219

has strong autocorrelation, time series models such as the

autoregressive model may be appropriate. We will consider

the forecasting model tailoring in a future paper.

Beside the wide applicability, another distinct advantage

of the method is its scalability. Although only 1971 time

series are used in the present study, the visualization is

capable to handle much bigger dataset (Fig. 5 will contain

more points, that’s all). However, the feature computation

step may be time consuming. The total run time for

calculating the features for all 1971 series is 62 s on a

late 2013 MacBook Pro computer. If we calculate features

for a million time series, approximately 8 h is needed.

Nevertheless, the forecast horizon for FMCG is usually

week-ahead, the computation time is thus not an issue in

operational forecasts.

Before we end this section, we would like to note

that the PCA-based method can directly operate on the

raw time series, i.e., each data point in the time series

becomes a feature. However, it is not recommended due

to the following two reasons: (1) the results are difficult to

interpret. Unlike Fig. 5 where the properties of each time

series can be easily associated with the feature names, if

raw time series is used, this would not be possible. (2) the

lengths of the time series need to be identical, which is

almost impossible to obtain in reality. On the other hand,

if features are considered, the length of the time series

becomes less important. We only need to ensure a same
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number of features are extracted from each time series.

V. CONCLUSION

Due to the hierarchical nature of the demand (from

manufacturers to distributors to retailers), big time series

data often exist in manufacturing supply chains. Several

exploratory analytics and visualization tools are proposed

in this paper to help discover useful knowledge and infor-

mation embedded in the data.

When the interest is in a single time series, we rec-

ommend to overlay exogenous factors (such as price and

promotion information) together with the demand time

series, so that the correlation among the factors and demand

can be visually inspected. When dealing with a moderately

large number of time series, we recommend to use the

kite plot. Similarities among various time series and the

data availability can be examined. Furthermore, some time

series characteristics such as the variability can also be

derived from the kite plot. Finally, for big time series data,

the principal component representation is suitable. Each

time series is reduced to a set of predefined features. The

properties of each time series, as well as the anomalies can

be summarized and derived from the standard biplot.

In Part II of this paper, some of the knowledge dis-

covered through the exploratory analysis herein shown is

utilized in forecasting. More specifically, we are interested

in producing forecasts for hierarchical FMCG demand in

an aggregate consistent manner.
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