2015 IEEE International Conference on Big Data (Big Data)

Forecast UPC-Level FMCG Demand, Part I:
Exploratory Analysis and Visualization

Dazhi Yang*, Gary S. W. Goh, Chi Xu and Allan N. Zhang
Singapore Institute of Manufacturing Technology (SIMTech)
Agency for Science, Technology and Research (A*STAR)

Singapore, Singapore

Email: *yangdz@simtech.a-star.edu.sg

yangdazhi.nus @ gmail.com

Abstract—We are interested in forecasting a large collection
of FMCG demand time series. As the demand of FMCG
exists in a hierarchy (from manufacturers to distributors
to retailers), the bottom level of the hierarchy may contain
thousands or even millions of time series. Producing aggregate
consistent forecasts while utilizing the unique features from
each time series thus become a technical challenge. To achieve
better forecasting results, exploratory analysis is often neces-
sary to obtain insights on the underlying demand generating
mechanism for each time series. Exploratory analysis aims at
discovering those so-called ‘“‘exogenous factors’, such as price,
demand of the complementary/substitutive goods and calendar
events, which can help explain some of the demand fluctuation.
During forecast accuracy evaluation, outlier detection is also
important; a single anomalous time series can contribute much
to the overall error. However, in a big data (such as retailing
scanner data) enabled environment, exploratory analysis and
visualization need much attention, because of the non-scalable
nature of the existing methods. Scalability is essential for
exogenous factor selection and outlier detection in big time
series data. In Part I of this two-part paper, we introduce
some exploratory analytics and visualization methods (from
not scalable to very scalable) for big retailing time series.
Forecasting of the hierarchical FMCG demand is addressed
in Part IL.
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I. INTRODUCTION

Stock-outs have been an issue for fast moving consumer
goods (FMCG) manufacturers, distributors and retailers for
many decades [1]. Due to the non-durable nature of FMCG
products, overstock situations are also not desired. Dete-
riorating products’ prices are usually significantly reduced
to stimulate demand, which directly translates to loss of
potential profits [2]. In today’s increasingly competitive
retailing industry, enterprises seek to minimize, if not elimi-
nate, the number of stock-outs and overstocks, as stock-outs
directly affect consumer loyalty and overstocks translate to
high inventory costs and wastage. Demand forecasting is
thus essential for FMCG manufacturers, distributors and
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retailers to coordinate their efforts in the supply chain
management processes to increase efficiency and improve
consumer service levels [3].

Regardless of online or in-store retailing, the volume
of demand-related data is enormous. As a result, retailing
industry is one of the pioneers in using big data. The
characteristics of the FMCG data align well with the HACE
theorem' proposed in Ref. [4]. A typical retailer would
collect scanner data over several dimensions including
items, stores, markets, categories. These data give rise to
the demand hierarchy.

There are many ways to segregate the FMCG demand.
For example, a manufacturer produces various goods; these
goods are shipped to various distributors and thus various
retailers. In such context, the bottom level of the hierarchy
contains the demand time series for each store and for
each product. We aim to forecast such hierarchical FMCG
demand in an aggregate consistent manner. In other words,
the forecasts produced at lower levels should sum to the
forecasts produced at higher levels. For example, at dis-
tributor level, the overall demand forecasts for a particular
product are generated with a particular model. However,
the demand forecasts for the same product but at store
level are often generated with different models, as retailers
are likely to have their own forecasting practice. Since the
forecasts at retailer level are generated independently, they
may not sum up to the distributor’s forecasts. Therefore, the
aggregate inconsistency in the forecasts becomes a technical
challenge. We will address this issue in Part II of this two-
part paper [5].

Given the size of a typical FMCG supply chain, the
number of bottom-level series can easily reach an order
of millions (e.g., 1000 retailers selling 1000 products).
The big dimensionality of the data not only challenges

Big Data starts with large-volume, heterogeneous, autonomous sources
with distributed and decentralized control, and seeks to explore complex
and evolving relationships among data [4].



forecasting, but also poses problems for exploratory analysis
and visualization. For example, the complementary and
substitutive effects in FMCG demand is well-known; by
including these effects in forecasting models can improve
forecast accuracy [6]. However, searching and identifying
relevant exogenous predictors from millions of candidate
predictors are not trivial.

Data inspection is a prerequisite to forecasting. Detecting
anomalous time series in a big data context thus needs
attention. In ordinary time series outlier detection, identify-
ing anomalous data points from a univariate time series is
the focus. However, when the data is a collection of time
series, it is more amenable for forecasters to identify the
unusual time series. Furthermore, when we consider data as
hypercubes, i.e., each data point is associated with several
tags (see Section II), missing data handling becomes crucial.
List-wise deletion in this case may lead to unnecessary loss
of data.

Based on the aforementioned challenges, three ex-
ploratory analytics/visualization methods are demonstrated.
A tool for exploring/visualizing a single demand time series
is provided in Section III-A. We found that by overlaying
exogenous factors (such as price, promotion and calendar
events) in a strategic way, the causal effects in FMCG
demand can be studied. Section III-B introduces the so-
called “kite plot”, which is suitable for exploring/visualizing
a moderately large number of time series. Kite plots are
compact, allowing us to put many time series side by side,
and thus visually identify similar time series. Furthermore,
missing data can easily be represented within kite plot.
Last but not the least, a scalable feature-based time series
representation is shown in Section III-D. By summarizing
the each time series into a set of predefined features and thus
performing principal component decomposition, we can
project big time series data onto a low-dimensional space.
Anomalous time series, as well as the features contributing
to the anomalies, can be identified through standard multi-
dimensional outlier detection methods. Furthermore, when
the time series is represented by features, we can assign ap-
propriate forecasting models to a time series by examining
the most influential features for that time series.

1I. DATA

We consider the Dominick’s database? in this paper; the
dataset is provided by the James M. Kilts Center, University
of Chicago Booth School of Business with a collaborative
effort by the Dominick’s Finer Food (DFF). Although the
dataset records weekly historical data from 1989 to 1994,
owing to its informative nature, it is still frequently being

2The dataset is freely available at http://research.chicagobooth.edu/kilts/
marketing-databases/dominicks/.

60 =
o 40 =
&)
(=W
]
G
o
**20 -
. HHHTW%WWM%
| | | |
0 10000 20000 30000
Data count
Figure 1. Histogram of UPC-level data availability for the bottle juice
category.

used to conduct marketing research [7], [8]. It was previ-
ously found that sales in Dominick’s database is large and
frequent [9]; the dataset thus provides a suitable platform
for our current investigation, i.e., forecasting under strong
demand fluctuation.

The dataset contains four types of files, namely, the
customer count file, store-level demographics file, universal
product code (UPC) files and movement files. As detailed
description of each file type can be found on the database
website, we do not reiterate here. Instead we provide some
insights on data preprocessing in the next section.

Store-level sales information for each UPC from 29
categories (such as beer, bottled juices, shampoos, etc) is
recorded in the movement files. The data from each category
can thus be viewed as data cubes (3-dimensional arrays)
with dimensions: time (7), store (S) and UPC (/). We
consider three data cubes, namely, unit price, movement
and promotion. As DFF will sometime bundle products
(e.g., 3 cans of tomato soup for $2), the unit price of a
product is obtained by dividing the raw price with quantity
of the bundle. Movement reflects the number of product
sold. Promotion indicates whether the product was sold on
promotion in a particular week. There are three types of
promotions, namely, bonus buy, coupon and simple price
reduction. As most of the promotions are the bonus buy
type, we do not distinguish types of promotion in this paper,
as per Ref. [6].

During the data preprocessing, we found that data could
be missing from any dimension, ie., 7, S and/or U.
Furthermore, the missing data from each data cube may
not locate at shared positions. Such nature of the data
creates difficulties in comparing research results, as each
individual researcher would apply different treatments for
missing data. We therefore make our data processing code
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available® and give a brief description on our particular
preprocessing sequence.

Throughout this paper, only data from the bottled juice
category (BJC) will be used for illustrative purposes. We
acknowledge that forecast results from a single category do
not represent those from the other categories. However, the
focus here is to demonstrate the collaborative effect among
distributors and retailers; the use of data from one category
is considered sufficient. From the raw data files, the above-
mentioned data cubes are constructed; the size of each data
cube is 7 x S x U, where T = 399 (this is the case for
all categories), S = 93 and &/ = 511. The total number of
data points for each UPC is thus 37107 if no missing data
is present. As shown in Fig. 1, out of the 511 UPCs in the
BIJC, only a handful of products have more than 30000 data
points. We select the 40 UPCs with most data.

III. EXPLORATORY ANALYSIS AND VISUALIZATION

The histogram filter used in Section II gives an overall
idea about the data availability. However, to obtain a deeper
understanding on the data and insights on the underlying
demand generating mechanism, detailed visualization is
required.

A. A Tool for Individual Time Series

As mentioned earlier, exogenous factors such as price
and promotion information may help predict the demand.

3Please contact the corresponding author for release of code.

If the interest is to study a single time series, it is logical
to overlay the exogenous factors together with the demand
time series itself, so that any strong correlation can be
detected visually.

In Fig. 2, the UPC-level sales of OceanSpray cranberry
juice cocktail (1 of the 40 previously identified UPCs) over
a period of ~ 4 years is plotted using a solid black line. The
store-wise averaged price of that UPC is shown by dotted
line. The averaging weights are calculated based on all
commodity volume (ACV) of each store*. All commodity
volume is the total annual revenue of the store (available
from the “PERregress” package in R [10]). The weighted
average of the promotional index is calculated similarly”.
The weekly promotional index is shown in Fig. 2 as the
opacity of the blue stripes (less opaque indicates small
index). Lastly, the calendar events are shown by the short
orange bars at the bottom of the plot. It can be seen from
Fig. 2 that a reduction in price (due to promotion) is an
evident cause of the increase in sales. On the other hand, the
seasonality (due to both yearly and calendar events cycles)
in unit sales time series is weak. The effect of including

“4For example, suppose a product is being sold on 3.5 dollars with
promotion in a store and the ACV of the store is 50 million dollars, and
it is being sold on 2.5 dollars without promotion in another store with an
ACV of 20 million dollars. The aggregated price would be 3.5x(50/70) +
2.5%(20/70) = 3.21 dollar

SFor the same ACV, the averaged promotional index is 1x(50/70) +
0x(20/70) = 0.71, given Z = 1 if the item is on promotion in a store and
0 otherwise.
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the calendar event and monthly dummy variables during
forecasting is thus inferred to be insignificant.

We note that step functions are used in Fig. 2; such
plotting design is essential for this visualization. As demand
may not respond to the promotions and price changes
immediately, plotting using step functions allows us to
examine whether the promotions and price changes are
aligned with demand. Given a long enough time series,
without such plotting design, it is impossible to identify
any misalignment.

B. A Tool for Many Time Series

Plots like Fig. 2 consider a single or a few time series at
a time. If the number of time series gets large, the resultant
“spaghetti” is not informative. Therefore, we can employ a
so-called “kite diagram” [11] to visualize the time series.
A kite diagram uses closed, symmetric glyphs to represent
data. In this case, the glyphs are formed by flipping the
strictly non-negative sales series about the x-axis. The
space-filling representation supports time series transient
visualization for a moderately large number of time series.
In additional, markers can be used to highlight unusual data
values such as missing data and zero sales. Fig. 3 shows an
example kite diagram for store-level demand of OceanSpray
cranberry juice cocktail. The plot contains rich information
about each time series; it also helps identify time series with
similar transient, which is very likely to be useful during
forecasting. Some other observations that can be made from
Fig. 3 include store commodity values (reflected by the
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Kite diagrams for a particular UPC sold at 93 stores. The strictly non-negative store-level sales time series is flipped about x-axis to form

width of the glyphs), promotional effect (relative magnitude
of the sales spikes) and whether the product is being sold
at a particular store (for long consecutive zero sales, the
product is most likely not being sold anymore, or if the
store is not yet open for business).

Although the kite plot is more compact than a simple
time series plot, it is still not very scalable. Arguably we can
insert more time series into the plot, however, as the number
of time series gets over a few hundred, visual identification
of similar time series becomes difficult.

C. Data Preprocessing Sequence

Before we introduce the scalable visualization tool for
big time series, based on previous visualizations, data
preprocessing sequence is first described. The processed
data will be subsequently used in Part II of this two-part
paper for forecasting.

After the histogram filter used in Section II, the total
number of store-level time series is 3720 (93 x40). We thus
have three matrices of size 3720x399 for unit sales, price
and promotion. Based on the observations, a preprocessing
sequence is designed for the DFF data:

1) Fig. 3 shows that the data from last few weeks are
constantly missing across stores. A list-wise deletion
(for all three matrices) is performed if there are more
than 2000 missing values in any column (weeks) of
any matrix. The size of the matrices is 3720x387
after this step.
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Figure 4. Calculation of lumpiness for a time series of length nm. Symbol var denotes variance.

2) After step 1, it is observed that most time series do not
contain any missing value. We therefore remove the
rows (stores) with any missing value based on the unit
sales matrix. The size of the matrices is 3036x387
after this step.

3) Fig. 3 indicates (by consecutive zero sales) that a
UPC may no longer be sold at a particular store.
Time series with more than 10 consecutive zero-sales
weeks are therefore filtered. The size of the matrices
is 2409x 387 after this step.

4) Tt is observed that zero sales may occur across the
stores for a particular UPC for a particular week. As
our aim is to consider hierarchical nature of the sales,
we remove columns (weeks) if zero sales are spanning
any UPC. The size of the matrices is 2409 x377 after
this step.

5) We repeat step 2 with respect to the price matrix, i.e.,
delete the time series with any missing price. The size
of the matrices is 1991377 after this step.

6) Spurious unit sales spikes are also observed in the
data. We consider a data point as a spike if it is 300
times more than the mean of the time series; those
time series containing any spike are removed. The
final dimensions of the matrices are 1971x377.

As our application is forecasting, our preprocessing is
designed to preserve the temporal structure as much as
possible (by sacrificing the number of bottom-level time
series). We note that the above preprocessing is ad hoc but
thorough. It also illustrates certain preprocessing difficulties
for a typical dataset.

D. A Tool for Big Time Series

In this section, we demonstrate a scalable time series
visualization technique using those 1971 time series ob-
tained after the preprocessing. Instead of considering the
time series space, we consider a feature space. A set of d
predefined features, see Table I for example, is extracted
from each time series. In other words, each time series
becomes a unit of observation in the feature space and
is described by the d-dimensional coordinates. Principal
component analysis is then applied to the features. Finally,

the exploratory visualization can be carried out through the
classic biplot [12].

Table I
VARIOUS TIME SERIES FEATURES USED IN THIS PAPER. WE NOTE THAT
THESE FEATURES ARE ADOPTED FROM REF. [13].

Feature Description

ACF1 First order of autocorrelation.
Trend Strength of trend.

Linearity Strength of linearity.

Curvature Strength of curvature

Entropy Spectral entropy.

Lumpiness | Changing variance.

Spikiness Strength of spikiness.

Lshift Level shift using rolling window.
Vchange Variance change.

Fspots Flat spots using discretization.
Cpoints The number of crossing points.
KLscore Kullback-Leibler score.
Change.idx | Index of the maximum KL score.

A total of 13 features (d = 13) are defined in Table 1.
Some of these features are intuitive while the others may not
be straightforward to understand. For example, lumpiness is
defined as the variance of the variances of data segments
from fix-sized time windows. To calculate lumpiness, the
raw time series is first divided into n length-m data seg-
ments, see Fig. 4. The variance of each data segment is
calculated, e.g., v1 = var{yi, - ,Ym}; and lumpiness is
given by var{vy,--- ,v,}. For a more detailed description
on various features shown in Table I, we refer the readers to
Ref. [13] and the references therein. Nevertheless, the set of
features is non-exhaustive, other features could be defined
based on applications.

After the features are calculated, PCA is performed.
Fig. 5 shows the biplot of the 1971 time series. Each
number in the plot represents one time series; a point along
a particular vector is best represented by that vector. For
examples, series-1787 at the top right corner is found to
be spiky and lumpy, where as series-1219 on the left has
strong first order autocorrelation.
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IV. DISCUSSION ON THE PRINCIPAL COMPONENTIAL
BASED VISUALIZATION

As the first few principal components are usually suf-
ficient to represent most variability in the feature space
(as indicated in Fig. 5, the first two principle components
explains about 60% of the variability of data in the feature
space), this algorithm can efficiently identify the anomalous
time series with respect to all other time series in the
collection. Once the bipolar is produced, standard multi-
dimensional outlier detection algorithms such as the highest
density region method [14] and «-hull method [15] can
directly be applied.

Another potential application of the principal component
based visualization is to help identify suitable forecasting
models. Using the earlier example, series-1787 is spiky and
lumpy, a variance stabilizing step, such as the square root
transform, prior to forecasting may be useful. Series-1219
has strong autocorrelation, time series models such as the
autoregressive model may be appropriate. We will consider
the forecasting model tailoring in a future paper.

Beside the wide applicability, another distinct advantage
of the method is its scalability. Although only 1971 time

5
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Biplot of the 1971 time series (represented by the numbers). 13 features are extracted from each time series and used in the principal

series are used in the present study, the visualization is
capable to handle much bigger dataset (Fig. 5 will contain
more points, that’s all). However, the feature computation
step may be time consuming. The total run time for
calculating the features for all 1971 series is 62 s on a
late 2013 MacBook Pro computer. If we calculate features
for a million time series, approximately 8 h is needed.
Nevertheless, the forecast horizon for FMCG is usually
week-ahead, the computation time is thus not an issue in
operational forecasts.

Before we end this section, we would like to note
that the PCA-based method can directly operate on the
raw time series, i.e., each data point in the time series
becomes a feature. However, it is not recommended due
to the following two reasons: (1) the results are difficult to
interpret. Unlike Fig. 5 where the properties of each time
series can be easily associated with the feature names, if
raw time series is used, this would not be possible. (2) the
lengths of the time series need to be identical, which is
almost impossible to obtain in reality. On the other hand,
if features are considered, the length of the time series
becomes less important. We only need to ensure a same



number of features are extracted from each time series.

V. CONCLUSION

Due to the hierarchical nature of the demand (from
manufacturers to distributors to retailers), big time series
data often exist in manufacturing supply chains. Several
exploratory analytics and visualization tools are proposed
in this paper to help discover useful knowledge and infor-
mation embedded in the data.

When the interest is in a single time series, we rec-
ommend to overlay exogenous factors (such as price and
promotion information) together with the demand time
series, so that the correlation among the factors and demand
can be visually inspected. When dealing with a moderately
large number of time series, we recommend to use the
kite plot. Similarities among various time series and the
data availability can be examined. Furthermore, some time
series characteristics such as the variability can also be
derived from the kite plot. Finally, for big time series data,
the principal component representation is suitable. Each
time series is reduced to a set of predefined features. The
properties of each time series, as well as the anomalies can
be summarized and derived from the standard biplot.

In Part II of this paper, some of the knowledge dis-
covered through the exploratory analysis herein shown is
utilized in forecasting. More specifically, we are interested
in producing forecasts for hierarchical FMCG demand in
an aggregate consistent manner.
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