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Abstract—In a big data enabled environment, manufactur-
ers and distributors may have access to previously unobserved
retailer-level demand related information. This additional
information can be considered in demand forecasting to
produce more accurate forecasts, and thus enable better
stock-outs management. In Part II of this two-part paper,
we explore the hierarchical nature of fast moving consumer
goods (FMCG) demand (represented by sales) time series
and produce one week ahead rolling forecasts on universal
product code (UPC) level (or distributor level, as per our
definition below). We show that the hierarchical forecasting
framework has significant accuracy improvement over the
conventional univariate forecasting methods. The main rea-
son of the observed improvements is due to the price and
promotion information available at the retailer level, which
is assumed to be unknown to the distributor. To reconcile
forecasts according to the hierarchy, only the forecast values
at retailer level are needed, the business strategies of individual
retailers remain proprietary. A freely available dataset is
considered to encourage further exploration. Data exploratory
analysis and visualization tools are discussed in Part I of the
paper.

Keywords-FMCG; forecasting; hierarchical reconciliation;
visualization

I. INTRODUCTION

Demand forecasting at various horizons is essential for

sales and operations planning (S&OP) process. Good fore-

casts provide strong decision support for operation man-

agement tasks such as capacity planning, inventory man-

agement and planning & scheduling [1]. We are interested

in forecasting the demand of fast moving consumer goods

(FMCG) on universal product code (UPC) level in this

paper.

In a big data enabled environment, manufacturers and

distributors may have access to previously unobserved

retailer-level demand related information. This additional

information enables potential integration of the hierarchical

demand. The hierarchy should be considered in demand

forecasting in order to produce more accurate forecasts at

various levels of the hierarchy. Before we introduce hierar-

chical forecasting, literature review on demand forecasting

for a single product in a single market is performed.

A. Literature Reivew

Generally speaking, the demand for a product is gov-

erned by economic theory. A typical retailer would collect

panel data over several dimensions including items, stores,

markets, categories. In addition, product characteristics and

demographics are also frequently being recorded and up-

dated. Theoretically, when individual consumer character-

istics are matched to the goods they purchased, the complex

and evolving relationships between consumer behavior and

demand can be studied.

Econometrics theory has potential in integrating the

above-mentioned data for demand prediction1. One such

example is the random-coefficients logit model [2]. It con-

siders the utility uijt of an individual consumer i from a

product j in a market t:

uijt = xjtβi − αipjt + ξjt + ǫijt (1)

where x and ξ are observed and unobserved product char-

acteristics, p is the price of product, ǫ is a zero mean

stochastic term and α and β are interpretable model coef-

ficients. It can be seen from Eq. (1) that prices of different

products in different markets, observed and unobserved

product characteristics and demographics are used to model

uijt. The demand can thus be estimated by integrating

over the probability mass of the consumers who choose

brand j in market t (see Ref. [2] for details). However,

such econometrics models are mostly used for market

share prediction. Furthermore, if we consider a particular

market at different time t, Eq. (1) suggests that in order to

forecast future utility, the future values of the predictors are

needed. Due to the theoretical nature of the method and the

complexity of the formulation, much work along this track

is on-going, manufacturers, distributors and retailers often

rely on simplistic but effective demand forecasting methods

in their day-to-day operations.

1Prediction is more general than forecasting.
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Alternative to econometrics demand models are time

series models (or extrapolative methods). These models

consider the evolution and dependence of the temporal

process of demand. Such demand forecasting models rely

on discerning demand patterns and are constructed based on

previous observations. Simple exponential smoothing (SES)

is one of the well-accepted models; it is shown that SES is

efficient in capturing the level component in demand over

time [3]. Given a demand time series {yt : t ∈ Dt}, where

Dt = {0, 1, 2, · · · } is the time indices, the weighted average

form of SES is given by:

ŷt+1 = αyt + (1− α)ŷt (2)

where symbolˆdenotes an estimate and 0 ≤ α ≤ 1 is the

smoothing parameter. Eq. (2) shows that the forecast at time

t+ 1 is a weighted average of the most recent observation

yt and the most recent forecast ŷt. The deficiency of SES

in FMCG demand prediction is thus apparent: when the

characteristics of the demand series change due to special

events such as promotions or holidays, the fitted parameter

can no longer describe the series. Exogenous inputs or

multivariate methods are needed to explain those special

events [4].

The so-called “base-times-lift” model is one of the

simplistic models that use exogenous variables [5]; it is

commonly adopted by the industry [3]. The base-times-lift

models first generates a baseline forecast using a model,

such as the SES, for non-promoted time periods. A “lift

effect” L is added to the baseline forecast during the

promoted periods. Ref. [5] models L using promotional

index I, i.e., L̂c = (Ic/Ip)Lp, where subscripts c and p
represent current and previous promotions. However, such

linear assumption on lift effect has been shown to be sub-

optimal in FMCG forecasting; it often performs worse than

SES model [3]. Better representations of lift effect are thus

desired.

In the literature, promotional demand is related to various

factors. Ref. [6] suggests that the promotional demand, and

thus sales, are mainly affected by promotion style, item

promotion history and store promotion history. Ref. [7]

considers deal types (promotion style), depth of deals,

as well as variations across categories, time and brands.

Among several alternatives, Ref. [3] presents a more general

formulation of FMCG demand with the following predic-

tors: (1) past values of demand of the focal product, (2)

price of the focal product, (3) promotional index of the

focal product, (4) price of the competitor products, (5)

promotional indices of the competitor products, (6) monthly

dummy variables and (7) dummies for calendar events; all

future information (other than demand itself) is assumed

to be known to the forecaster. These predictors are related

to the future demand of the focal product through the

autoregressive distributed lag (ADL) model:

ln(y0,t) =α0 +

ℓ∑

j=1

αj ln(y0,t−j) +

ℓ∑

j=0

β0,j ln(p0,t−j)

+
ℓ∑

j=0

γ0,jI0,t−j +

P∑

p=1

ℓ∑

j=0

βp,j ln(pp,t−j)

+

Q∑

q=1

ℓ∑

j=0

γq,jIq,t−j +

12∑

d=1

θdmonthly_dummyd

+

C∑

c=1

1∑

ν=0

δc,νcalendar_eventc,t−ν + εt (3)

where ℓ is the maximum lag; P and Q are numbers of

competitor products in terms of price and promotional index

respectively; ν = 0 corresponds to the calendar event week;

ν = 1 corresponds to the week before the calendar event

week; C is the number of distinct calendar events in a year;

the remaining symbols in Eq. (3) are self-explanatory. The

values of P and Q are selected via the lasso (least absolute

shrinkage and selection operator). It was shown that the

ADL model outperforms both the SES and base-times-lift

models.

The method proposed in Ref. [3] can be considered as the

state-of-the-art forecasting model for FMCG. It reflects a

strong belief in the effect of predictor variables in predicting

the response variable. However, the ADL model shown in

Eq. (3) has two major deficiencies for operational forecast:

1) The first deficiency lies within the modeling part.

Suppose C = 9 and P = Q = ℓ = 2 (which are the

typical values [8]), the total number of predictors is

50. There is a high chance that the model is misspeci-

fied (e.g., retaining null of the t-test). This would lead

to an additional regression parameter selection stage

beside the original lasso step, i.e., lasso determines

P and Q, and the additional parameter selection step

reduces number of predictors from 50 to a smaller

number. Without the additional parameter selection

stage the insignificant predictors only contribute to

the variance of the predicted value.

2) The exogenous factors such as promotion information

is usually available at store level or retail enterprise

level but not available to manufacturers and distrib-

utors. Therefore the ADL model is not applicable to

manufacturers and distributors; they have to make

forecasts based on the historical order placement

information provided by the retailers.

Beside the above two major deficiencies, other issues such

as missing data handling, scalability of the algorithm, lasso

regression design and error evaluations in Ref. [3] also have

room for improvements. However, we mainly address the
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Figure 1. A three-level hierarchical time series structure.

second issue in this paper, i.e., improving FMCG unit sales2

forecasting on universal product code (UPC) level, without

using the retailer-level strategic information (such as an

upcoming promotion).

B. Hierarchical nature of FMCG sales

FMCG unit sales data can be modeled as a hierarchical

structure as according to how the UPCs are being distributed

in a supply chain; Fig. 1 gives such an illustration. Level 0

(Total) denotes the completely aggregated distributor-level

time series. Level 1 (A, B and C) shows the first level

of disaggregation which could represents various UPCs

handled by the distributor. Down to level 2 (AA, AB, · · · ,

CC), it contains the most disaggregated time series, e.g. the

demand at individual outlets. The dataset used in this paper

is disaggregated first by product type then by geography,

although other configurations of the hierarchical structure

could be defined.

In a typical supply chain, distributors receive orders from

the retailers and thus make forecasts based on historical

orders. If we assume independent decision making among

the retailers, price and promotion information is unob-

servable by the distributors. The forecasts made by the

distributors are thus often based solely on the aggregated

sales time series. However, such distributor-side forecasts

are inconsistent with the sum of all retailer-side forecasts,

due to the different forecast generating processes used by

various parties. In an ideal environment where every retailer

produce their own forecasts based on their business strategy

and feed the results to the distributor, the forecasts in the

supply chain need to be “aggregate consistent”. Forecast

reconciliation is therefore needed.

In fact, the problem herein discussed is related to infor-

mation sharing in supply chains. In the field of management

science, information sharing is not new [10], [11]. However,

most studies are theoretical; much attention is focused on

the effects of information sharing on operation management

issues such as inventory management. Ref. [12] reviewed

2Despite the differences between demand and sales [9], we consider
using unit sales to represent demand and evaluate various models’ perfor-
mance based on sales data.

the current state-of-the-art on the value of sharing demand

information. It is concluded that whether to share demand

information depends on whether the downstream demand

process can be inferred. At this stage, we consider the

case where the downstream demand cannot be inferred.

In addition, we note that the forecasts at retailer level are

not actual orders. If the forecasts are the same as orders,

providing such information to the distributed would have

no practical relevance.

In this paper, we show that the hierarchical reconciliation

using the retail-level data would improve UPC-level forecast

accuracy significantly. The proposed forecasting framework

needs collaborative efforts among the individual retailers

and the distributor. Such collaboration protects proprietary

information as only the forecasts are needed, without dis-

closure of business strategies. The paper is organized as

follows: Section II introduces formulation and variants of

the hierarchical reconciliation. As the name suggests, the

method reconciles the forecasts instead of producing the

forecasts; base forecasts are generated independently by

various distributors and retailers prior to reconciliation.

Section III illustrates our assumptions and approaches to

produce base forecasts. Detailed results and discussions are

shown in Section IV and Section V concludes the paper.

II. HIERARCHICAL RECONCILIATION

In this section, hierarchical forecasting methods will be

discussed based on the illustrative example shown in Fig. 1.

More general description of the methods can be found in

Refs. [13]–[15]. We note that the number of hierarchies and

aggregation/disaggregation interpretation may vary based

on the granularity of the available research data.

The underlying principle of hierarchical prediction is

originated from a summing matrix S. Suppose Yi,t de-

notes all observations at level i and time t and Yt =
(Y0,t,Y1,t,Y2,t)

�, then:

Yt = SY2,t (4)
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where

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

The summing effect is apparent. The bottom-level time

series will sum into various time series in the hier-

archy based on various rows in S. Suppose Ŷt+h =
(Ŷ0,t+h, Ŷ1,t+h, Ŷ2,t+h)

� denotes the h-step-ahead base

forecasts (see below), all hierarchical forecasting methods

can be written as:

Ỹt+h = SP Ŷt+h (6)

where P is a matrix of choice to reconcile forecasts, Ỹt+h

is the final revised hierarchical forecasts.

In general, there are four ways to reconcile the forecasts,

namely, the top-down approach, the bottom-up approach,

the middle-out approach and optimal reconciliation [14].

For example, if P = (09×4|I9), where 0i×j is the i×j null

matrix and I9 is a size 9 identity matrix, Eq. (6) represents

the bottom-up approach. In this case SP = (013×4|S), the

times series at levels 0 and 1 are simple sums of the bottom-

level series. Similarly, the top-down approach corresponds

to P = (p|09×12) where p = (p1, · · · , p9)
� is a vector of

“weights” of the bottom-level series.

As compared to the bottom-up and top-down approaches,

much effort is needed to derive the representation for

optimal reconciliation. We refer the interested readers to

Ref. [13] for details; we only state the main results here.

The general idea is derived from the representation of the

h-step-ahead base forecasts by a linear regression model:

Ŷt+h = Sβh + εh (7)

where εh has zero mean and covariance Σh; βh =
E(Ŷ2,t+h), i.e., βh is the expectation of the base forecasts.

Ref. [13] showed that under a reasonable assumption3, the

optimal reconciled forecasts are given by the generalized

least square (GLS) solution:

Ỹt+h = Sβ̂h = S(S�S)−1S�Ŷt+h (8)

3Sometimes, it is reasonable to assume ǫh ≈ Sǫ2,h, where ǫ2,h is
the level 2 forecast errors in our case, or more generally, the bottom-level
forecast errors.

which is equivalent to the ordinary least square (OLS)

solution. Note that β̂h = (S�S)−1S�Ŷt+h in Eq. (8) is the

best linear unbiased estimator [14]. In this case, P in Eq. (6)

is (S�S)−1S�. Therefore, we only need to construct the

summing matrix and produce the base forecasts in order

to obtain the optimal reconciled forecasts. On the other

circumstances, if the earlier assumption does not hold, GLS

solution is:

Ỹt+h = S(S�
Σ

†
hS)

−1S�
Σ

†
hŶt+h (9)

where Σ
†
h is the generalized inverse of the error covariance

matrix. However, Σh is not known and very difficult4

(or impossible) to estimate for large hierarchies [15]. The

weighted least squares (WLS) solution given by:

Ỹt+h = S(S�
ΛhS)

−1S�
ΛhŶt+h (10)

may be appropriate. Λh in Eq. (10) is a diagonal matrix

with elements equal to the inverse of the variances of εh.

III. PRODUCING BASE FORECASTS

Following Eq. (6), the collection of base forecasts is

needed to reconcile the forecast according to the hierarchy.

We consider the Dominick’s database in this paper; the

dataset is provided by the James M. Kilts Center, University

of Chicago Booth School of Business with a collaborative

effort by the Dominick’s Finer Food (DFF). In Part I of this

two-part paper [16], data exploratory analysis, visualization

and preprocessing are described in details. However, we

would make necessary reiterations in Part II, so that the

present paper can be relatively independent. At this stage,

we note that 37 UPCs (level 1 time series) from the bot-

tled juice category are selected to demonstrate hierarchical

forecasting.

A. General methods versus specific methods

Univariate statistical forecasting methods such as the

autoregressive integrated moving average models (ARIMA)

and exponential smoothing state space models (ETS) are

general; they can arguably be applied to any time series

and generate forecasts (see Refs. [17], [18] for details of

ARIMA and ETS respectively). These univariate methods

do not consider the effects of exogenous factors. In FMCG

forecasting, the exogenous factors such as price and pro-

motion are well-studied. There is little argument we can

make on not using these factors when data are available.

Forecasting methods which consider domain knowledge are

specific methods.

4In general, given the symmetrical structure of Σh, there are n(n+1)/2
parameters to be estimated in a GLS setting, which is difficult especially
when n is large. This is usually counteracted by imposing some structure
on Σh, so that the number of parameters to be estimated is much smaller.
Even though, the appropriateness of such structure needs to be carefully
examined.
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Complete time series
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3

4

n

...
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forecasts

Training: 1 ∼ 200 Unused: 202 ∼ 377

· · · · · ·

Training: 2 ∼ 201 Unused: 203 ∼ 377

· · · · · ·

Training:3 ∼ 202 Unused: 204 ∼ 377

· · · · · ·

Training: 4 ∼ 203 Unused: 205 ∼ 377

· · · · · ·

Training: n ∼ 376

· · · · · ·

Figure 2. Experimental design: 177 (n = 177 in this case) rolling forecasts are performed for each time series. The data point being forecast is shown
in red. The size of training window (shown in blue) is fixed at 200.

In this paper, we consider using SES (equivalent to an

ARIMA(0,1,1) model) to represent the general methods.

This is because our time series do not process strong

seasonal and trend components. For specific methods, we

consider using the ADL model. Instead of following the

fully specified Eq. (3), a reduced form is used:

ln(y0,t) =α0 +

ℓ∑

j=1

αj ln(y0,t−j) +

ℓ∑

j=0

β0,j ln(p0,t−j)

+

ℓ∑

j=0

γ0,jI0,t−j + εt (11)

To support our model of choice, we use a data visualization

technique in Ref. [16]. It is shown that the calendar events

(9 holidays) and 12 months in a year have minimal cor-

relation with the demand fluctuation. The monthly dummy

variables and dummy variables for calendar event in Eq. (3)

are thus dropped.

Besides the dummy variables, the full ADL model shown

in Eq. (3) also considers the promotional index and price

of the competitor products as predictors. In a separate anal-

ysis we found that given the 37 selected UPCs, including

the lasso-identified competitors only add to the prediction

variance but not accuracy. An obvious reason for such

observation is that our products are from the same category,

the complimentary effect (e.g. bread and butter) of FMCG

sales is not applicable. The substitution effect (e.g. eggs

from different farms) is also hypothesized to be minimal due

to the relatively persistent price over the years, and thus the

consumer loyalty. Therefore, we use Eq. (11) in this paper

to optimize the trade-off between prediction variance and

accuracy by only considering the promotional index and

price information of the focal product.

B. The pitfalls of using averaged information

Ideally, if all the retailer-level business strategies for a

particular UPC is available to the distributor, the distributor

would make an informed decision on overall price and

promotional index, and thus calculate the price curves and

promotion stripes shown in Fig. 2 of Ref. [16]. The UPC-

level forecasts can then be made using ADL models such as

Eq. (11). However, as mentioned in point 2) Section I, such

information is usually not available to distributors; applying

ADL on UPC level may not be practically viable. In addi-

tion, as all the stores in the DFF dataset belong to the same

retailer group, the retailers tend to adopt a uniform pricing

strategy where they increase or decrease the price for all

the stores at the same time [19]. When the pricing strategies

are decided independently and the number of independent

retailers is large, the price and promotion information on

UPC level may be redundant (e.g., each and every week

there may be several retailers making promotions so that

the overall promotional index is “flat” throughout a year).

In such scenarios, the distributor would rely on simple time

series models to make forecasts. Following this assumption,

we only use SES to forecast the UPC-level sales, i.e.,

forecast the level 1 time series; whereas for the retailer-

level sales where price and promotion information is more

readily available, ADL is used.

C. Experimental design

An ad hoc data preprocessing sequence is used in

Ref. [16] to yield a total of 1971 store-level time series
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Table I
FORECAST ERRORS (MAPE) OF 37 SELECTED UPCS FROM THE BOTTLED JUICE CATEGORY. THE ERRORS ARE IN PERCENTAGE.

UPC Product name
No. of

series

Univariate methods Hierarchical methods

Persistence SES Bottom-up Optimal (OLS) Optimal (WLS)

1 7045011484 SUNSWEET PRUNE JUIC 48Oz 55 10.16 10.74 9.02 10.73 8.65

2 5300015154 REALEMON PLASTIC LEM 45Oz 61 11.17 9.64 9.00 11.03 8.92

3 5300015108 REALEMON LEMON JUICE 8Oz 64 15.11 13.05 10.89 14.98 10.89

4 3828103123 HH LEMON JUICE 32Oz 61 16.74 16.92 18.32 16.55 17.50
5 3828103091 HH APPLE JUICE 128Oz 66 31.81 37.66 20.92 31.40 20.86

6 3828103025 DOM APPLE JUICE 32Oz 52 39.11 41.96 21.97 38.40 21.68

7 3828103021 HH APPLE JUICE 48Oz 63 62.84 182.55 34.23 61.84 33.88

8 3120027407 OS PINK GRAPEFRUIT 64Oz 42 29.99 34.58 17.61 30.04 17.51

9 3120027007 OS GRAPEFRUIT JUICE 64Oz 53 28.16 30.34 12.68 27.94 12.59

10 3120026134 OS LC CRANRASP 48Oz 52 26.11 24.66 12.26 26.22 12.33
11 3120021007 OS CRANAPPLE DRINK 64Oz 62 25.18 27.01 12.21 24.74 12.12

12 3120020035 OS LO CAL CRANBERRY 48Oz 63 21.33 20.29 10.49 21.37 10.43

13 3120020007 OS CRNBRY JCE COCKTA 64Oz 65 26.15 30.91 11.67 25.86 11.51

14 3120020005 OS CRANBERRY COCKTA 48Oz 66 34.65 50.54 12.46 34.38 12.41

15 1480031656 MOTTS NATURAL APPLE 64Oz 65 74.67 55.48 20.62 73.62 20.57

16 1480000034 MOTTS REGULAR APPLE 64Oz 67 85.04 73.67 26.49 83.91 27.72
17 7045011329 SUNSWEET PRUNE JUICE 32Oz 61 12.28 11.99 12.10 12.32 11.70

18 5300015132 REALEMON LEMON JUICE 32Oz 66 16.55 17.49 17.05 16.57 16.05

19 4850000193 TROP TWSTR ORGCRAN 46Oz 34 30.35 29.55 16.27 30.06 16.20

20 4180022700 WELCHS WHITE GRAPE J 64Oz 54 10.49 11.11 16.51 10.36 15.14

21 4180020750 WELCHS GRAPE JUICE 64Oz 65 11.21 11.11 14.87 11.41 13.89

22 4176000394 INDIAN SUMMER APPLE 64Oz 64 141.24 262.59 31.19 139.11 30.83

23 3828103017 HH APPLE JUICE 64Oz 67 66.32 76.37 25.33 65.51 25.16

24 3828103009 HH PRUNE JUICE 40Oz 40 15.72 15.93 13.47 16.14 12.91

25 3120027005 OS GRAPEFRUIT JUICE 48Oz 39 29.75 30.56 16.69 29.61 16.60

26 3120026107 OS CRANRASPBERRY DR 64Oz 56 28.70 33.27 12.07 28.38 11.97

27 3120026105 OS CRANRASPBERRY 48Oz 45 43.58 71.13 20.12 43.51 20.30
28 3120021005 OS CRANAPPLE DRINK 48Oz 41 41.11 55.02 18.67 41.08 18.65

29 3828103115 DOM CRANBERRY RSPBRY 48Oz 7 33.58 33.57 27.12 37.00 26.60
30 3828103033 HH CRANBERRY JUICE C 48Oz 61 23.28 24.27 18.61 22.94 18.45

31 3828103005 DOM PRUNE JUICE 32Oz 41 16.49 15.89 15.48 16.62 14.63

32 3120027405 OS PINK GRAPEFRUIT 48Oz 26 31.49 36.20 19.40 31.97 19.33

33 1480000032 MOTTS APPLE JUICE P 32Oz 62 9.57 9.07 11.71 9.62 10.60
34 5300015407 REAL LIME JUICE 8Oz 7 24.35 22.16 22.72 25.99 21.44
35 7045011402 SUNSWEET PRUNE JCE W 40Oz 58 12.53 14.76 11.56 12.43 11.00

36 3120020000 OS CRANBERRY COCKT 32Oz 59 10.99 9.96 10.50 11.06 10.20
37 1480051324 MOTTS CLAMATO JUICE 32Oz 61 14.10 12.69 15.27 14.10 14.75

overall 1971 31.40 39.59 16.96 31.32 16.65

for 37 UPCs over a period of 377 weeks. For each of the

2009 time series (1, 37 and 1971 time series at levels 0, 1

and 2 respectively), we produce 177 rolling forecasts with

a moving window of 200 weeks of training data. In other

words, the first 200 data points are used in model fitting

to produce the first forecast; when the ‘new data’ becomes

available, we refit the model using the new window of 200

weeks and produce another forecast. An illustration of the

experimental design is depicted in Fig. 2. An alternative to

the present approach is to use a fixed model throughout the

evaluation period. It is found that some time series have a

gradual change in level component; the iterative approach

could capture the gradual change and thus make better fore-

casts. We also note that it is possible to perform experiments

to investigate the effect of training length on forecasting

accuracy, however, we limit our choice of training length

of 200 following Ref. [3]. In forecasting studies, another

commonly evaluated parameter is the forecast horizon. For

the DFF dataset, it was shown that the difference between

a 1-week-ahead and 12-weeks-ahead forecasting accuracies

is small [3].

There is a rich literature on choice of error metrics in

forecasting. In this study we choose the scale-independent

mean average percentage error (MAPE), which is most

widely used in practice [20].

IV. RESULTS AND DISCUSSION

We apply both SES and persistence models on the 37

UPC-level aggregated series. Persistence model assumes

the forecast is equal to the current observation; it is of-

ten included as a naive benchmark. Table I shows the

results. It is observed that the overall performance of the

persistence model is better than that of the SES, although

SES gives improved results for some UPCs. Fig. 3 shows
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the forecast results time series plot for 2 selected UPCs.

The relatively big SES forecast error (182.55% for SES;

62.84% for persistence) for UPC-3828103021 originates

from the misidentified level component (see left plot). The

misidentification is caused by the large sales peaks present

in the data. On the other hand (right plot), when the data

fluctuates about a level, SES gives slightly better results

owing to its smoothing property.

Recall in Section II, we introduced several variants of

hierarchical forecasting, including top-down, bottom-up and

optimal approaches. For FMCG data, it is well-known that

information loss is substantial in aggregation and therefore

the top-down method may not be suitable. Furthermore,

given our hierarchical structure, it is not easy to assign

weights to the middle- and bottom-level series. For example,

we need to know the market share of each UPC in order

to assign weights to the middle-level series. We therefore

consider bottom-up and optimal approaches for hierarchical

forecasting. Both OLS and WLS but not GLS are used

in optimal reconciliation for obvious reasons stated in

Section II. Since persistence is superior to SES for our

particular dataset, we use results from the persistence model

(for levels 0 and 1 only; level 2 series is forecast using ADL

models) during reconciliation. The results are tabulated in

Table I. To further understand the errors, the scatter plot

of measured versus forecast unit sales for each forecasting

method is shown in Fig. 4. Note that both the ordinate and

abscissa are on log-scale; hexagon binning algorithm is used

for visualization.

From Table I and Fig. 4, both bottom-up and optimal

(WLS) approaches show significant improvements over the

univariate methods, whereas the optimal (OLS) reconcil-

iation gives similar results to the persistence model. The

unsatisfactory performance of OLS-based reconciliation is

caused by the heteroscedasticity in the data. The bottom-

up and optimal (WLS) approaches do not distinguish from

each other in this case study. It is believed that the good

performance of the bottom-up approach can be attributed to

the nature of the data. Even at the very bottom level, the data

is well behaved, with price and promotion driven unit sales

for most series. It is also hypothesized that when the number

of time series and number of levels in the hierarchy scale

up, the optimal reconciliation would be more advantageous

than the bottom-up approach.

V. CONCLUSION

We perform one-week-ahead UPC-level FMCG sales

forecasting by considering the inherent hierarchical struc-

ture of the distributor-retailer relationship in a supply chain.

The optimally reconciled hierarchical forecasts using WLS

is shown to be the most promising as compared to the

other benchmarking models. The WLS approach is able to

achieve an overall of 58% lower MAPE over SES. With

these more accurate forecasts and without the need for

either distributors or retailers to divulge sensitive business

information, it depicts a win-win situation for this supply

chain cooperative model to be both efficient and practical.

In future, we will further explore hierarchical fore-

casting (for supply chain applications) by considering an

extended hierarchy, i.e., including manufacturers/suppliers

and/or products from different categories. To improve scal-

ability, the recursive calculation of (S�
ΛhS)

−1 as shown

in Ref. [15] can be employed. Other exogenous information

such as sentiment scores from online product reviews as

well as marketing and advertising strategies will be explored

to evaluate whether they can improve forecast accuracy.

In addition, probabilistic forecasts instead of the current

point forecasts will be investigated. We will also attempt

to address the computational challenge in estimating the

variance-covariance structure of the base forecast, so that

a GLS solution to the hierarchical reconciliation can be

employed.
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