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Abstract
Information Systems Technology and Design

Masters of Engineering (Research)

Analyzing Deep Learning Models for Traffic Prediction

by Gary GOH Shing Wee

Traffic prediction problems concern the mobility of human crowds in urban city
landscapes. The study of these problems is crucial to improve the efficiency of traffic
flows in urban networks and people’s quality of life. Deep learning, in recent years,
has achieved impeccable results and outperformed traditional statistical methods for
solving traffic-related problems in the literature. However, deep learning suffers from
poor interpretability. The aim of this dissertation is to investigate deep learning models
applied in the traffic domain, and interpret the behaviors of the models by analyzing
salient global feature importance and specific input-to-output relationship. First, a lit-
erature review of traffic prediction problems and deep learning models is included,
followed by a review of analyzer methods for interpreting deep learning models. Sec-
ond, we explore the usage of Twitter’s tweets as a new source of additional information
in the new digital age to improve the performance of a crowd flow prediction model
ST-ResNet on the city-wide crowd flow prediction task, as well as to provide addi-
tional context to the prediction in the form of human natural language. Third, we take
inspirations from deep learning attribution methods such as Integrated Gradients and
SmoothGrad, and proposed a novel improved method, SmoothTaylor, which is derived
from the Taylor’s theorem. Finally, we discuss future work as we share some prelim-
inary applied results of the above attribution methods on the traffic status prediction
for graph-based traffic status prediction model.
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Chapter 1

Introduction

This introductory chapter presents a background on transportation systems and the in-
creasing relevance of deep learning applied in this domain and its shortcomings, which
form the motivations of this dissertation. A background on the topic is given in Sec-
tion 1.1. Next, the objectives of the thesis are outlined in Section 1.2, and a description
of how the chapters of this thesis is organized is given in Section 1.3.

1.1 Background

Rapid urbanization results in huge population and vehicle growth in cities and in-
creases the toll on transportation infrastructure. Therefore, intelligent transportation
system (ITS) is essential to enable efficient mobility of large number of people within
urban landscapes. The goal of ITS is to reduce traffic congestion, which translates to
lesser time lost, improved productivity, better air quality, and more sustainable energy
usage (Wang, Zhang, Liu, et al., 2019). Aided with the advancement of information
systems and technology, and the collection of large streams of data from traffic sensors
installed all across the transportation network, a modern ITS is expected to be able to
analyze and process them at real-time to allow for quick decision making. The central
components of an ITS are machine learning models that learn statistical patterns from
large datasets which generalizes to learned systems that can accurately and reliably
predict the future traffic conditions.

Recent advancements in deep learning push the performance boundaries of Artifi-
cial Intelligence (AI) in several applied research areas such as in computer vision and
natural language processing. They often outperform traditional statistical machine
learning models (e.g. Hidden Markov Model, Conditional Random Field, Decision
Trees, Support Vector Machine, Bayesian Network) by a large margin. Thus, it is ex-
pected to observe an increased number of studies that propose deep learning models to
replace traditional machine learning models in ITS with the aim to boost the accuracy.
However, the increase in performance comes at the cost of poor interpretability. Due to
the highly non-linearity in deep neural networks, they are often treated as a black box
(Figure 1.1). This results in the difficulty to explain for the decisions of deep neural net-
works, poor input-to-output inference, and eventually lead to the lack of trust between
humans and AI systems.
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FIGURE 1.1: Deep neural network seen as a black-box, which ignores the
intricacy and explanations behind the results of the model and focuses

largely on just the input and output.

1.2 Objectives

The overall objective addressed by this dissertation is to analyze deep learning models
applied to traffic prediction with two main approaches. First, we explore the utiliza-
tion of exogenous data sources (e.g. social media, weather, holidays) apart from the
traditional data streams from sensors in the network, to not only be used as an addi-
tional source of input to the model with the aim to improve model accuracy, but also
be used as a way to gain insights and explain for the model’s predictions. Second, we
examine various Explainable Artificial Intelligence (xAI) methods that are designed to
interpret deep neural networks and apply them to produce insights from global input
feature importance maps and specific input-to-output attribution heatmaps. In addi-
tion, we explore the application of xAI methods on specific deep neural networks that
solve traffic-related problems and explain from spatial and temporal points of view.
The goal of xAI is to bridge the gap between humans and AI and facilitate the building
of trust between them so as to encourage more widespread usage of AI from research
into practice.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, a literature review is pre-
sented on machine learning methods that are applicable to the traffic domain, various
traffic prediction problem types and the respective models proposed to solve them. xAI
methods that are generally applied to deep learning are also reviewed. Next in Chap-
ter 3, we present a study on incorporating tweets from a popular microblogging site,
Twitter, and fusing them into the inputs to a deep neural network that solves for crowd
flow prediction. In Chapter 4, we refine an existing xAI deep neural network attribu-
tion method and propose a novel theoretical algorithm, which we show its effectiveness
in the image classification context. Lastly, in Chapter 5, we present preliminary results
on the application of the selected xAI methods on a specific deep neural network on
the traffic status prediction, and conclude by discussing directions of future work.
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Chapter 2

Review of Literature

This chapter presents a literature review on the three main areas of interest identified
in this thesis and their related work.

The first Section 2.1 is a review of relevant machine learning methods that are com-
monly applied to traffic prediction problems. Secondly in Section 2.2, we describe sev-
eral different types of traffic prediction tasks and review their respective deep neural
network models proposed in the literature to solve them. Finally in Section 2.3, a re-
view of Explainable Artificial Intelligence (xAI) methods that are relevant to deep neu-
ral networks in general is presented.

2.1 Machine Learning Methods

In this section, we conduct a survey on the general techniques in machine learning
models for traffic prediction. We briefly review traditional learning methods, followed
by some general architectures found in most deep learning methods, and then focus
more on recent developments in deep learning methods in Section 2.2, which have
been shown to greatly improve the performance when compared to traditional learning
methods.

2.1.1 Traditional Learning

For the prediction of continuous values such as travel times, traffic speeds and traffic
flows, the most straightforward approach is to treat it as a linear regression problem
(Ide and Sugiyama, 2011; Zheng and Ni, 2013). Apart from the spatial properties of the
input, Zheng and Ni (2013) also considers learning different weights to represent the
contribution of temporal properties. However, ultimately linear model cannot repre-
sent non-linearity in its function and thus limits the capacity. To overcome this limita-
tion, other methods such as Decision tree (DT) (Gal et al., 2017) and Hidden Markov
Model (HMM) (Yang, Guo, et al., 2013) are proposed. These methods partition the in-
put space and fit each segment independently, resulting in non-linear overall functions.
Additional boosting techniques such as boosting and Random Forests (RF) (Leshem
and Ritov, 2007) are used to improve the accuracy.

For time series forecasting, classical methods include Auto-regressive Integrated
Moving Average (ARIMA) and Exponential Smoothing (ES) (Ding et al., 2011; Hamed
et al., 1995; Li, He, et al., 2017; Tran et al., 2015; Williams and Hoel, 2003; Van Der
Voort et al., 1996). Kalman Filter (KF) (Guo, Huang, et al., 2014; Em et al., 2019; Lint,
2008) is shown to produce better performance when the data contains high uncertainty.
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Support Vector Regression (SVR) (Jin et al., 2007; Tang et al., 2019; Wu, Ho, et al., 2004;
Hong et al., 2010; Castro-Neto et al., 2009; Asif et al., 2014) is also often proposed and
shown to produce good accuracy. However, when the traffic data is highly irregular
and abnormal, other methods such as k-Nearest Neighbor (k-NN) (Wang, Tang, et al.,
2019; Rahmani et al., 2013; Chang et al., 2012) and Online Boosting Non-parametric
Regression (OBNR) (Wu, Xie, et al., 2012) can be more effective. These non-parametric
methods are more sensitive to short-term variations and thus are able to handle spikes
more easily. However, they are unable to effectively leverage on useful spatio-temporal
features in the data to predict overall traffic at a large-scale network level.

For traffic classification of discrete values such as determining the mobility status
or transportation mode of a subject (e.g. stationary, walking or driving), methods pro-
posed include HMM (Krumm and Horvitz, 2004; Sohn et al., 2006; Zhu, Zheng, et al.,
2012; Zheng, Xie, et al., 2008), Conditional Random Field (CRF) (Patterson et al., 2003;
Liao, Patterson, et al., 2007), and Bayesian Network (BN) (Yin et al., 2004; Stenneth et
al., 2011; Zhu, Peng, et al., 2016). This thesis focus more on prediction of continuous
values, and thus we leave the discussion here as related work.

2.1.2 Deep Learning

The recent advancement of deep neural network algorithms, greater access and avail-
ability of large data corpus, and improved computing power, have created a conducive
environment for deep learning to grow and mature.

Towards the direction of deep learning, early work in the domain of traffic predic-
tion include shallow Artificial Neural Network (ANN) mostly with Multi-layer Percep-
tron (MLP) (Jindal et al., 2017; Xiaojian and Quan, 2009; Huang and Ran, 1995; Huang,
Tang, et al., 2013; Habtie et al., 2015; Akiyama and Inokuchi, 2014; Wang, Cao, et al.,
2017; Jiang and Fei, 2015; Zheng and Lee, 2006), a fully-connected feed-forward neural
network (see Figure 2.1a) with a minimum of three layers (input, hidden and output
layer). However, MLP is unable to represent spatial correlations in traffic networks
well. Furthermore, its shallow architecture also makes it difficult to apply on larger-
scale prediction problems.

Deep learning methods are able to learn highly dimensional functions with more
flexible architecture designs. These designs are able to represent more complex non-
linear spatio-temporal dependencies. They also scale more efficiently to predict traffic
status for the entire transportation network.

One of such design is Convolutional Neural Network (CNN) (Fukushima and Miyake,
1982; Krizhevsky et al., 2012), is widely popular in the traffic prediction literature (Ma
et al., 2017; Wang, Zhang, Cao, et al., 2018) due to its ability to encode spatial dependen-
cies effectively. CNN is extensively popularized in the research area of computer vision.
It utilizes multiple kernel filters which slide across the input space, together with con-
volutional operations followed by a non-linear activation function to detect non-linear
pattern across the input feature map and to ultimately detect and ultimately non-linear
decision boundaries. Max or average pooling is sometimes used to aggregate informa-
tion and reduce representation dimensionality. This process repeats multiple times to
form depth in the neural network (see Figure 2.1d), allowing further dependencies to
be learnt. However, as road networks only occupy a small proportion of the spatial
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(A)
MLP

(B)
SAE

(C) DBN

(D) Convolutional Neural Network.

(E) Recurrent Neural Network.

(F) Graph Convolutional Network.

FIGURE 2.1: Diagrams of various deep learning design architectures for
traffic status prediction.
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FIGURE 2.2: Illustrations of the LSTM and GRU design.

space, the input matrix is quite sparse. Consequently, training CNN for traffic predic-
tion while covering the whole two-dimensional space in which the roads are sparsely
embedded is largely inefficient.

To address the above limitation, a generalization of CNN known as Graph Convo-
lutional Network (GCN) (Zhao, Song, et al., 2020; Geng et al., 2019; Xu and Li, 2019; Bai
et al., 2019; Fang et al., 2019; Chen, Chen, et al., 2020; Guo, Lin, et al., 2019; Li, Yu, et al.,
2018) is widely proposed for the context of traffic prediction in recent years. Modeling
the inherent physical structure of a connected road network as a mathematical graph,
together with a pre-defined adjacency matrix, GCN learns a function that maps feature
values to output feature for every node in the graph (see Figure 2.1f). This approach is
able to train models at a faster rate and achieve better performance over time.

Another popular design is Recurrent Neural Network (RNN) (Elman, 1990), which
is intended to model sequential data, and thus very applicable in traffic prediction
(Ramakrishnan and Soni, 2018) to encode temporal dependencies. RNN is widely ap-
plied to natural language processing tasks such as machine translation, text generation,
speech-to-text/ text-to-speech and captioning. RNN links units together by taking the
output of a previous unit and feeding it as an additional input to the next, passing on
information from past input values (see Figure 2.1e). This mechanism enables RNN
to learn long-term dependencies from other past time instances. However, vanilla
RNN suffers from the vanishing and/or exploding gradient problem, which hinders
the learning process as gradients either diminish to zero or explode to large values,
causing the performance to be saturated or to deteriorate quickly during training. Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), a variant of RNN, is
proposed to address this limitation. This is done by adding the update gate which reg-
ulates the flow of signals out of the unit, and the forget gate which allows the unit to
ignore or retain the previous state value from the previous time step. The Gated Recur-
rent Unit (GRU) (Cho et al., 2014), a simplified variant of LSTM, is also commonly used
as it requires less time to train. The illustrations for LSTM and GRU designs are shown
in Figure 2.2. In addition, bi-directional variants are often used, where the weights are
trained separately in both forward and backward directions (see Figure 2.3), increasing
the capacity of the model.

Other related deep neural network models such as Stacked Auto-encoder (SAE)
(see Figure 2.1b) (Lv, Duan, et al., 2015) and Deep Belief Network (DBN) (see Figure
2.1c) (Jia et al., 2016; Yang, Dillon, et al., 2017; Huang, Song, et al., 2014; Koesdwiady
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FIGURE 2.3: Illustration bi-directional RNN mechanism.

et al., 2016; Lee et al., 2009) are early implementations of deep learning structures into
traffic prediction. However, due to their rigid architecture types and high number of
weights required, it does not have enough design flexibility as compared to the more
prevalent CNN and LSTM units.

2.2 Traffic Prediction Problems

Traffic prediction covers a wide range of problem types and thus requires various spe-
cific deep learning model architectures to handle them. We first focus on the tasks
which require forecasts of future traffic conditions, followed by a brief overview of
studies done on other traffic-related tasks which are beyond the scope of our study.

2.2.1 Traffic Status Prediction

A frequent traffic management task is the prediction of future traffic status across the
network. Usually, the traffic status of a node in a network is either measured by the
average traffic speeds of vehicles passing through that point (the slower the speeds,
the longer the travel times, resulting in the worsening of the traffic status), or by the
number of traffic flows going through that point in a short time interval (the more
the flow counts, the higher chance of a congestion). Traffic speeds can be regarded as
continuous values to predict (regression), or they can also be categorized into discrete
groups of different continuous intervals (classification), while traffic flow counts are
discrete integer values.

Traffic flows are traditionally measured by Vehicular Loop Detector (VLD) sensors
installed under roads that provide the number of vehicles passing through it during a
small time interval. With the increased usage of mobile technology recently, Global Sys-
tem for Mobile Communications (GSM) signals data that provide sequences of Global
Positioning System (GPS) points are also commonly used to measure traffic flows and
speeds. Some VLD sensors also collect traffic speed data.

The ability to predict which roads will be congested or clear in the future is very
useful for applications such as travel time estimation, dynamic traffic control and nav-
igation route planning. This is especially so when there are sudden non-routine huge
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traffic spikes in small areas that cause major congestion that ripple throughout the net-
work. These spikes are usually caused by events that attract or deter people to or from
a localized area, causing excessive traffic in the surroundings.

Across the literature, there are generally two ways to predict network-wide traffic
status. The first is network-based, where the aim is to directly predict future traffic
status values at each node. The second is region-based, which is dependent on how a
city is spatially divided into multiple discrete but adjacent regions, and the traffic flows
are counted as the aggregated number of vehicles/people leaving (outflows) and en-
tering (inflows) from one region to another. One advantage of region-based prediction
is that it is able to represent traffic status from all spatial regions, while the network-
based prediction is constrained to only predict traffic status at locations of the installed
sensor nodes. If the sensors are sparsely installed (i.e. far apart from each other) that
might be due to cost constraints, then network-based traffic prediction lack sufficient
information to effectively model the traffic status in between them. Another advantage
of region-based prediction is the increased protection of users’ data privacy. With the
aggregation of individuals data performed at regional level, specific personal data is
lost making backwards inference much more difficult and thus improving data privacy
security.

We discuss some of the models presented in the literature from each category in the
following.

Network-based

For network-based traffic flow prediction with deep learning models, one of the ear-
lier study is proposed by Lv, Duan, et al. (2015) who adopt SAE in their deep learning
model, as well as some others (Yang, Dillon, et al., 2017; Leelavathi and Devi, 2016;
Jia et al., 2016). Others propose to use DBN (Jia et al., 2016; Yang, Dillon, et al., 2017;
Huang, Song, et al., 2014; Koesdwiady et al., 2016; Lee et al., 2009), which is built
by stacking multiple Restricted Boltzmann Machine (RMB). Both SAE and RMB are
trained greedily layer by layer with the purpose to capture spatial and temporal de-
pendencies directly. Most of them append a fully-connected MLP at the end of the
model as the predictor layer for network-based traffic. However, SAE and DBN are of-
ten overly parameterized for the context of traffic status prediction. Thus, newer work
in the literature propose to use more sophisticated and efficient deep learning design
architectures to further improve the prediction accuracy.

Yu, Li, et al. (2017) utilize multiple stacks of LSTM to predict traffic flows during
peak hours. Zhao, Chen, et al. (2017) and Fu et al. (2016) design a 2-dimensional LSTM
network, with units from each dimension to encode both temporal and spatial obser-
vations. Cui, Ke, et al. (2018) propose a deep stacked bi-directional LSTM to predict
traffic speeds, while Wang, Gu, et al. (2016) use CNN with a recurrent layer for error-
feedback from previous time steps. Several publications (Lv, Xu, et al., 2018; Wang and
Li, 2018; Yu, Wu, et al., 2017; Wu and Tan, 2016; Wu, Tan, et al., 2018) integrate both
CNN and RNN into a single hybrid deep neural network model. Specifically, CNN is
used to capture topology awareness features (spatial), while LSTM is used to capture
periodicity features (temporal). However, training RNN generally takes a long amount
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of time. In addition, since road networks are quite sparse (i.e. a road usually only con-
nect with other road a few times), using CNN to encode spatial inputs may not be the
most efficient.

To address the limitations of RNN and CNN, GCN models are proposed to model
the road network directly as graphs, so that there are fewer parameters to learn. Li,
Yu, et al. (2018) find a suitable integration of CNN, RNN (GRU) and GCN in their ap-
proach known as Diffusion Convolutional Recurrent Neural Network (DCRNN) to pre-
dict network traffic speeds. Yu, Wu, et al. (2017) propose a model based on GCN known
as Spatio-temporal Graph Convolutional Neural Network (ST-GCNN) and show a 14
times improvement in training speed as compared to DCRNN. Cui, Henrickson, et
al. (2019) propose Traffic Graph Convolutional Long Short-Term Memory Neural Net-
work (TGC-LSTM), which introduce k-hops adjacency matrix and a matrix to denote
reachable nodes to model traffic impact transmission according to traffic flow theory.
Jepsen et al. (2020) propose Relational Fusion Network (RFN), a GCN-based model that
takes into account intricacies of road networks such as edge curvature, sharp exit turns,
that may affect traffic speeds.

Region-based

As for region-based traffic prediction problems, Zhang, Zheng, et al. (2018) propose a
deep CNN model based on Residual Network (ResNet), which is a technique used to
mitigate the effects of vanishing gradient problem as CNN models become deeper, to
predict city-wide crowd flows. Specifically, the entire city is split via a grid with equal-
sized squares, and each snapshot of the city traffic flows is treated as an image where
inflows and outflows are viewed like different color channels in images. Similarly, Sun,
Wu, et al. (2020) propose a deep learning model based on CNN with residual units to
predict future traffic flows but uses taxi’s GPS trajectory data instead of traditional sen-
sors to estimate and construct the traffic flow matrices. Ma et al. (2017) also took a
similar approach by treating the traffic data on a grid as an image, but for the traffic
speed prediction problem. To leverage on temporal dependencies in previous snap-
shots, other studies (He, Chow, et al., 2019; Yao, Tang, et al., 2019) first apply CNN to
encode spatial information in each snapshot, and then apply LSTM to encode temporal
information in a sequence of snapshots.

2.2.2 Other Traffic-related Problems

In this section, we briefly summarize some other traffic-related prediction problems
that are out of the scope of this thesis now but may be relevant in the future.. One of
them is travel time estimation (Jindal et al., 2017; Li, Fu, et al., 2018; Yuan et al., 2020;
Wang, Zhang, Cao, et al., 2018; Zhang, Wu, Sun, et al., 2018), which takes an origin-
destination pair or a trajectory path on the road network and the departure time as
inputs, and predicts the overall traveling time. Another task is the travel demand esti-
mation (Wang, Cao, et al., 2017; Kuang et al., 2019; Geng et al., 2019; Xu and Li, 2019;
Bai et al., 2019; Chu et al., 2018; Ye et al., 2021; Yao, Wu, et al., 2018), which predicts the
future transportation requests from various regions of a city. This is commonly framed
in the context of predicting taxi demand or cab-sharing, with the end goal of optimiz-
ing supply to demand allocation. Others include traffic data generation (Song et al.,
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2019; Wu, Chen, et al., 2017), traffic signal control (Li, Lv, et al., 2016; Van der Pol and
Oliehoek, 2016; Gao et al., 2017; Genders and Razavi, 2016), traffic accident prediction
(Chen, Song, et al., 2016; Sun, Dubey, et al., 2017; Fouladgar et al., 2017; Zhang, He,
et al., 2018; El Hatri and Boumhidi, 2018) and classification of road conditions (Nolte
et al., 2018; Ramanna et al., 2021), road signs (Zhang, Huang, et al., 2017; Zeng et al.,
2017; Li, Møgelmose, et al., 2016; Li and Yang, 2016) and mode of transportation (Liu
and Lee, 2017; Qin et al., 2019; Wang, Luo, et al., 2020; Liu, Wu, et al., 2019). Some of
the above mentioned problems are crucial for the application of autonomous vehicles
which is a highly foreseeable technology to be applied in the future in a large-scale
manner.

2.3 Explainable Artificial Intelligence

Explainable Artificial Intelligence (xAI) for deep learning is of paramount importance
towards its widespread adoption, as it aims to provide answers to the biggest short-
coming of deep learning - the lack of transparency and poor interpretability. Even
though deep neural networks are able to consistently perform at high accuracy levels,
it is still crucial to understand how they work correctly or incorrectly, and why they
arrived at a particular prediction. The non-linear mappings inside deep neural net-
works obfuscate the relationship between the input and output. As a result, the lack
of a human user understanding of the internal functions of these models hinder ef-
forts to debug errors, seek for design improvement ideas, and also the validation of
predictions.

There are several ways in which undesirable biases and errors can be introduced
into the model without our knowledge at various stages of model learning pipeline. At
data collection, the data may be contaminated as not all the data in the train datasets are
guaranteed to be of the best quality since the data labeling process is highly susceptible
to human errors. During training, there might be hidden bugs in the model implemen-
tation that results in defective model parameters. At test time, out-of-distribution or
out-of-domain test inputs result in potentially erroneous predictions, as those outlier
inputs are not well supported by training samples from which the network can gener-
alize towards the outliers.

Explanation methods provide deep machine learning models the ability to explain
their complex behaviors in understandable terms to humans, which helps to establish
human users trust in deep learning systems. They also serve as good guides to re-
searchers and engineers to better understand the models, the problem that the models
aim to solve, and the datasets used for training and testing.

There are generally two explanation approaches for deep learning xAI: intrinsically
explainable and post-hoc explainable (Du et al., 2019). Intrinsic explainability is about
building a new model with improved explainability, possibly deviating from design
choices that would be made if only prediction accuracy would be of interest, while
post-hoc takes the model as is and tries to derive an explanation after training. There
are also two types of explanations: global and local. Global explanations describe what
input features are important to the model in general, while local explanations describe
how the model arrived at a specific output for a specific input.
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FIGURE 2.4: Illustration the attention mechanism.

We review the different explanation methods based on the above categorization in
the following sections.

2.3.1 Intrinsic Explainable Methods

Intrinsic explainable methods are self-explanatory components that are built into the
deep neural network inner structure which are designed to be more easily interpretable.
These added components are trained together with the models’ initial parameters.
Thus, it may impact the model prediction performance for better or worse depend-
ing on several conditions such the datasets and/or model design, therefore limiting its
general applicability.

Intrinsic methods that generate global explanations are mostly implemented by
adding interpretable constraints into the model. Sabour et al. (2017) introduce a group
of neurons known as capsules to augment deep neural networks. The activation vectors
of active capsules are able to semantically represent certain humanly understandable
concepts which allow users to verify useful patterns that the models also capitalize on.
Zhang, Wu, and Zhu (2018) add a regularization loss in filters at high-level convolution
layers in CNN-based models known as interpretable CNN, so that users can under-
stand how the CNN memorize certain patterns but at a small cost of performance.

A widely utilized approach for generating local explanations intrinsically from deep
learning models is the use of attention weights generated from the attention mechanism
(Mnih et al., 2014; Bahdanau et al., 2016; Rayhan and Hashem, 2020; Xie et al., 2021).
The attention component maps the importance parts of the input features by learning
to assign higher weights to parts that help to improve accuracy (see Figure 2.4). Visu-
alizing the weights for specific input-output pair allows users to interpret which part
of the input is being focused most by the model. However, they also extend the num-
ber of learnable model parameters, which increase training time especially if the input
sequences are long.



Chapter 2. Review of Literature 12

Lastly in this category, there are also prototype-based methods (Sato and Yamada,
1995; Schölkopf and Smola, 2003; Chen, Song, et al., 2016), or also known as Learning
Vector Quantization (LVQ). Prototypes are learnt by selecting training data samples
that can best represent the class it belongs. Prototype-based models then predict by
calculating similarity scores of a given input to the prototypes and assign the the label
of the most similar prototype as the output. Given an unseen test input, these methods
identify the top most similar (based on some distance measure) prototypes which a
human user can then use as references by example to better understand how this input
relates to the predicted output.

2.3.2 Post-hoc Explainable Methods

Post-hoc explainable methods analyze deep neural networks after they are fully pre-
trained, and do not interfere with the learning process. The aim is to extract useful
patterns that have been learnt by the models and can be found in the model’s parame-
ters or learned representations.

There are visualization techniques proposed to translate learned global representa-
tions into an intuitive format for human users to understand. One of the earlier work
is done by Simonyan et al. (2014) who introduce a technique to construct visualiza-
tions in the input space based on the gradients of the output neurons that is calculated
using back-propagation with respect to the input. Several other work follow suit in
the same direction with little suggested improvements (Yosinski et al., 2015; Wei et
al., 2015). Mahendran and Vedaldi (2016) and Mordvintsev et al. (2015) also create vi-
sualizations that can help users to understand how a deep learning model learns by
reconstructing input images from layer activations rather than to explain a prediction.
However, their visualizations often contain unnatural colors or repeated recognizable
image fragments that do not fit as a coherent whole (see Figure 8 in Nguyen, Yosin-
ski, et al. (2016)), resulting in anomalous images as explanations. Nguyen, Yosinski,
et al. (2016) improve the quality of the visualizations to a great extent by considering
the multi-faceted nature of high layer neurons. There are also studies done to interpret
encoded intermediate layers within a pre-trained deep CNN (Zhang and Zhu, 2018;
Erhan et al., 2009). Similarly, Aubry and Russell (2015) visualize the importance of pre-
selected input feature maps by measuring the responses of intermediate layers, while
Olah et al. (2017) generates visualizations for convolution layers which activate the out-
put neuron. Lu (2015) apply Principal Component Analysis (PCA) on the outputs of
deep CNN models and visualize the class embeddings which highlight the presence
of semantic concepts learnt by the models. An alternate approach to visualize feature
representation is the use of up-convolution (Dosovitskiy and Brox, 2016), which relies
on training a new neural network that takes in a feature map as input and reconstruct
a corresponding image as an explanation of the feature map.

Apart from visualizing CNN-based models, there are also several work that visual-
ize useful representations learnt by RNN (Kádár et al., 2017; Karpathy et al., 2016). The
last encoded hidden state of RNN is studied and shown to contain meaningful complex
semantic concepts.

An alternative generic method to analyze global behaviors of a complex model is
known as model extraction (Bastani et al., 2019; Kazhdan et al., 2020; Zhang, Yang,
et al., 2019). The aim of model extraction is to approximate a complex model using
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an easily interpretable model (for e.g. linear regression, decision tree). With a good
enough approximation with comparable prediction accuracy, the behavior of the com-
plex model can be understood through the parameters of an easily interpretable model.

To analyze local input-to-output behaviors, one idea is to view it as a feature at-
tribution problem. These methods assign a relevance score for each input feature that
contributes towards a model’s output. A class of model-agnostic gradient-based ap-
proaches include using gradient map (Baehrens et al., 2010; Simonyan et al., 2014), In-
tegrated Gradients (IG) (Sundararajan et al., 2017), SmoothGrad (Smilkov et al., 2017)
and its variants (e.g. VarGrad (Adebayo et al., 2018), SmoothGrad Squared (Hooker et
al., 2019)), Input-Grad (Shrikumar et al., 2017), Expected Gradients (Erion et al., 2020),
and SmoothTaylor (Goh et al., 2021). Some model-specifc methods include Class Acti-
vation Mapping (CAM) (Zhou et al., 2016) and Gradient-weighted CAM (Grad-CAM)
(Selvaraju et al., 2017).

Another class of method involves calculating the relevance scores using a modified
version of back-propagation. These methods include DeConvNet (Zeiler and Fergus,
2014; Springenberg et al., 2015), Guided Backpropagation (Springenberg et al., 2015),
Layer-wise Relevance Propagation (LRP) (Bach et al., 2015; Binder et al., 2016), Deep
Learning Important FeaTures (DeepLIFT) (Shrikumar et al., 2017), DeepTaylor (Mon-
tavon et al., 2017) and PatternNet (Kindermans et al., 2018).

Ribeiro et al. (2016) propose a model-agnostic method known as Local Interpretable
Model-agnostic Explanation (LIME), which approximates an interpretable linear model
locally around a selected input, and uses the weights of the linear model based on its in-
put features to generate local explanations. Similarly, Lundberg and Lee (2017) present
SHapley Additive exPlanations (SHAP) which also locally approximates a complex
model function around the specific input and measures the impact of dropping a fea-
ture onto the prediction.

Another type of model-agnostic method to generate local explanations that is often
used is perturbation-based explanation. This line of work (Zeiler and Fergus, 2014; An-
cona et al., 2017) measures the importance of an input feature by measuring how much
the final prediction scores change when the feature is perturbed (or omitted/occluded
to represent unknown information). However, perturbation-based methods are often
very computationally expensive especially when the dimension of the input is huge,
since the features are perturbed one at at time. An alternative model-specific approach
through mask perturbation (Fong and Vedaldi, 2017) address the above limitation. A
new deep neural network can also be trained (Dabkowski and Gal, 2017) to predict the
attribution mask so as to improve the efficiency of the perturbation-based explanation
method.

The computation of specific adversarial samples for deep learning models is a great
tool to understand how incorrect predictions are caused by vulnerable points in the
input space (Szegedy et al., 2014; Su et al., 2019; Koh and Liang, 2017). Similarly,
Zhang, Wang, et al. (2018) propose a method to identify potential biased representa-
tions in CNN. With deeper understanding of adversarial or biased samples, it can help
researchers to detect and fix errors in the training data as well the model implementa-
tion.
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Chapter 3

Twitter-informed Crowd Flow
Prediction

3.1 Introduction

Fine-grained crowd flow prediction within a city is valuable for traffic control manage-
ment and could improve travelling experience and public safety. Crowd flows refers
to traffic flows that are aggregated spatially over a region in a city, and temporally
over a time interval. Accurate knowledge of future crowd flows could lead to bet-
ter travel time estimations and more optimized route selection during navigation for
general users (Niu et al., 2015). It could also facilitate governments and/or urban city
planners to strategize and enforce targeted traffic control measures in advance to curb
the level of congestion in the city, and could potentially be very useful in averting over-
crowding situations in specific regions. For example, in September 2017, a huge crowd
of people gathered together at a train station in Mumbai on a rainy morning rush hour
when four trains arrived simultaneously, resulting in a tragic stampeded that killed 23
people. 36 people also died in a stampede during Shanghai’s 2015 New Year’s Eve cel-
ebration. These tragedies could have been avoided or at least mitigated if authorities
are advised with future crowd flow predictions and take early preventive measures,
such as setting up blockades, broadcasting warnings, or conducting evacuations.

Many studies have been conducted on the traffic flows prediction problem, and re-
cent work achieves relatively reasonable accuracy (Abadi et al., 2015; Ni et al., 2014;
Xu, Kong, et al., 2014; Zhang, Zheng, et al., 2018). These approaches focus on captur-
ing patterns from historical observations of traffic flows to predict future observations.
Due to the nature that traffic flows are largely periodical, such as the predictable peaks
in the morning and evening rush hours, relying on past observations is generally effec-
tive. However, the poor predictive performance arises when there are non-recurring
events that can influence large-scale crowd movement, which cannot be inferred from
historical data. Examples of such events include, traffic incidents, road closures, road
works, sports events, musical concerts, celebratory events, or any other events that
cause sudden interests in particular regions such as the sudden congregation of “Poke-
mon Go” players in specific random spawn locations to catch rare in-game creatures.
These events can be rare and only affect small regions in short time intervals, yet it
is especially during these critical periods, that accentuates the need for more accurate
crowd flow predictions so that the relevant authorities can respond timelier to the sit-
uation.
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We consider utilizing real-time texts from the Internet, which can contain informa-
tion on such critical non-recurring events, by feeding them as additional inputs to an
existing crowd flow prediction baseline model. More specifically, we focus on tweets
to represent non-recurring crowd flows influencing information, as it has been demon-
strated that Twitter is able to react to news events more quickly when compared with
traditional media (Petrović et al., 2010). It presents a huge well of untapped freely
available information, which explains the extensive research attention on tweets in-
formation extraction in recent years. In this chapter, we aim to address the following
research questions:

1. Can tweets be useful for crowd flow prediction?

2. How are tweets related to traffic / crowd flows?

We analytically answer the above questions through conducting empirical experi-
ments in the context of Singapore, experimenting with two traffic flow datasets – Vehic-
ular Loop Detector (VLD) signals across the city which measure the number of vehicles
passing on roads, and Global System for Mobile Communications (GSM) signals which
measure the number of people moving from point to point.

We employ the Spatio-temporal Residual Network (ST-ResNet) crowd flow predic-
tion model, as proposed by Zhang, Zheng, et al. (2018), as our baseline. ST-ResNet
is an end-to-end deep neural network predictive model built to forecast the citywide
crowd flows, which has been shown useful for predicting crowd flows in Beijing and
New York, but not yet for Singapore. Its design is also highly flexible and allows easy
integration of additional inputs.

Incorporating tweets as inputs to an end-to-end structured prediction model is chal-
lenging due to the large presence of noise found in unstructured text. Some tweets may
be irrelevant to the search keywords used to extract them. In addition, efficiency is a
crucial factor for real-time metropolitan-level crowd flow prediction. Thus, we explore
several efficient linguistic features such as tweet counts, tweet tenses and tweet senti-
ments, which are relatively insensitive to noise, and extend upon our baseline model to
receive tweet information as additional inputs. Results over four years of data suggest
that tweet information is indeed relevant to traffic, significantly reducing prediction
errors for both road traffic and mobile phone signals. We additionally find that peo-
ple tend to tweet more nearing relevant traffic-influencing events, which suggests that
tweets are good indicators to crowd flows. To our knowledge, we are the first to inves-
tigate the usage of tweets to the crowd flow prediction task. Regrettably, we are unable
to release the traffic flow datasets due to confidentiality issues. However, our code for
the extended model and the tweets dataset are publicly available1, and we strongly
encourage readers to reproduce our results in the context of other cities.

The rest of the chapter is organized as follows. Section 3.2 introduces our problem
statement formally along with the datasets used in our experiments. Section 3.3 sum-
marizes the internal structures of ST-ResNet and how it is configured to take tweets
inputs. The experiment settings are detailed in Section 3.4, along with the results and
our discussions. Section 3.5 presents related work in this field. Finally, Section 3.6
concludes this chapter.

1https://github.com/garygsw/twitter-crowd-flow-prediction
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FIGURE 3.1: Visual representation of spatio-temporal crowd flows with
a time series of 3D 2-channel images.

3.2 Problem Statement

There are numerous ways to define spatial regions, but for the context of our study, we
use an evenly-spaced grid map of dimensions I × J to partition a city, where each grid
cell denotes a spatial region. The size of the map is based on the limits of the latitudes
and longitudes. Each of the grid cell contains two types of crowd flows: inflows and
outflows, as illustrated in Figure 3.1. Together, crowd flows for every region within a
time interval can be represented by a 3-dimensional image-like matrix with 2 channels;
one for inflow and the other for outflow.

At the tth time interval, the crowd flows in all I × J regions is denoted as a tensor
Xt ∈ R2×I×J where (Xt)0,i,j = xin,i,jt denotes the inflows and (Xt)1,i,j = xout,i,jt denotes
the outflows. The crowd flow prediction problem becomes a rolling horizon time series
prediction task, where the aim is to predict the next time interval’s image. Formally,
the crowd flow prediction problem is defined as: given historical observations {Xt|t =
0, ..., n− 1} and any additional inputs from external factors, predict Xn.

For our experiments, we used two different sets of citywide traffic flow data from
Singapore to construct the crowd flow tensors. Their metadata is tabulated in Table 3.1.
We use multiple datasets from different time spans so as to validate the performance
of the predictive model, since cross validation is not feasible for the rolling horizon
prediction problem

In addition, we collected weather and public holidays datasets, as well as the ex-
tracted tweets information from a set of tweets. All of these datasets corresponds to the
time span of the traffic flow datasets. The dataset preparation process is as follows:
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FIGURE 3.2: Aggregation of the type of flows depending on direction
and position of VLD sensor. Here, f tk represents the flow in road link k

at time interval t.

(A) Road links with VLD
sensors.

(B) Traversable grids.

FIGURE 3.3: Singapore map overlaid with the grid map.

FIGURE 3.4: Singapore map overlaid with selected locations of with
tweet mentions extracted. Red points denote train stations; others are

in blue.
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3.2.1 Vehicular Loop Detector Sensors

We aggregate signals from over 57,000 VLD sensors that are installed across major road
intersections and expressways in Singapore, as shown in Figure 3.3a. These sensors
count the number of vehicles that passes through each point.

Let Q be a collection of VLD signals at the tth time interval. For grid cell (i, j)t
that refers to the region in the ith row and the jth column, the aggregated inflows and
outflows at the time interval t are defined respectively as:

xin,i,jt =
∑
q∈Q
|q|, qs /∈ (i, j) ∧ qe ∈ (i, j) (3.1)

xout,i,jt =
∑
q∈Q
|q|, qs ∈ (i, j) ∧ qe /∈ (i, j) (3.2)

where |q| is the value of the VLD signal in Q; qs → qe represents a VLD signal starting
from point qs and ending with point qe; qi ∈ (i, j means that point qi lies within grid
cell (i, j, and vice versa (see Figure 3.2).

3.2.2 Global System for Mobile Communications Signals

We aggregate GSM communication signals, where the location shifts of mobile phone
users are estimated based on the closest cellular tower connected to their phones. As
the origin and destination points could be situated quite far away, there is a need to
infer their most likely trajectories in their path through the grid in order to construct
the crowd flow tensors. A map of traversable regions is marked out so as to ensure all
points are reachable by any point, as shown in Figure 3.3b. Subsequently, a breadth-
first search shortest path algorithm is used to infer the trajectories for every origin-
destination pairs.

Let P be a collection of trajectories at the tth time interval. For grid cell (i, j), the
aggregated inflows and outflows at the time interval t are defined respectively as:

xin,i,jt =
∑
Tr∈P

|p|, ∀k > 1, gk−1 /∈ (i, j) ∧ gk ∈ (i, j) (3.3)

xout,i,jt =
∑
Tr∈P

|p|, ∀k > 1, gk−1 ∈ (i, j) ∧ gk /∈ (i, j) (3.4)

where Tr : g1 → g2 → ... → g|Tr| is a trajectory in P, and gk are points along the
trajectory; |p| is the number of people travelling on trajectory Tr.

3.2.3 External Data

Weather information is scrapped from a website2 which provides historical hourly
weather information. The sub-factors include temperature, wind speeds, and one-hot-
vectors to represent one of the 8 different weather conditions – sunny, cloudy, overcast,
rain, light rain, heavy rain, fog and haze. The public holidays and weekends can be

2www.timeanddate.com
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TABLE 3.1: Crowd flow datasets description.

Dataset VLD GSM

Datatype Vehicular flow counts Origin-destination pairs

Timespan
Set 1: 1 Mar 2013 - 30 Jun 2013
Set 2: 1 Sep 2014 - 31 Dec 2014
Set 3: 1 Dec 2015 - 31 Mar 2016

1 Aug 2017 - 30 Nov 2017

# of time intervals (T ) 5,856 1,464
Grid map size (I × J) (89, 49) (90, 54)

TABLE 3.2: Examples of Twitter search keywords used.

Train stations Points of interests Estate names

Braddell Esplanade Theatre Serangoon
Dhoby Ghaut Marina Bay Tampines
Outram Park Singapore Indoor Stadium Clementi

inferred from the calendar and is encode by a binary vector that correspond to every
time interval.

3.2.4 Tweets Data

Our tweets are collected based on a set of 369 search keywords that are appropriately
selected to cover key regions within Singapore, extracting a total of 1.28 million tweets.
Several keywords are shown in Table 3.2. The full list of search keywords is attached
together with our code.

These keywords are based on the names of locations with high capacity to hold
large crowds, as well as names of regions which are representative of localized regions,
such as train stations names, estate names, towns, campuses etc. The spatial distri-
bution of these locations are shown in Figure 3.4. The tweets are aggregated spatially
based on the latitudes and longitudes of the location of its search keyword, and tempo-
rally based on its creation time.

Here we have a T × I×J matrix containing a set of tweets relevant to each grid cell
(i, j), where T is the total number of time intervals in our datasets.

3.3 Model

An overview of the ST-ResNet model’s architecture is shown in Figure 3.5. The aim is
to predict the next crowd flow at time t. The original model comprises of four compo-
nents. The first three components in the middle possess the exact same structure, but
each of them models the spatio-temporal correlations from historical observations at
different time granularity – weekly, daily and hourly. The fourth component, shown
on the left of Figure 3.5, considers external factors that affect the crowd flows across the
entire city, such as the weather, day of the week and public holidays. We extend the
model by adding a fifth component, which extracts a set of features from a tweet stream
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FIGURE 3.5: ST-ResNet overall architecture with extended tweet extract
component.

and appends them to the inputs of the hourly component before feeding it through the
neural networks. The following sub-sections describes each component more atten-
tively, but we refer readers to the paper of Zhang, Zheng, et al. (2018) for more details.

3.3.1 Historical Observations Component

The weekly, daily and hourly components takes in an ordered concatenated series of
crowd flow matrices from past observations but at three different lengths of time in-
tervals apart denoted by W , D and H respectively. The size of each of the sequence is
parameterized by lW , lD and lH . The idea behind the choice of these time granularity
originates from how traffic patterns are usually found in these time intervals. These
two main elements form the internal structure of this component:

Convolutions

The idea is to stack multiple Convolutional Neural Network (CNN) to explore spatio-
temporal correlations between nearby and distant inflows and outflows across differ-
ent historical time intervals. Each convolutional mapping is denoted by Conv, and is
defined as:

Xi+1 = f(W(i) ∗X(i + b(i)) (3.5)

where ∗ denotes the convolution function; f is the Rectified Linear Unit (ReLU) activa-
tion function; W(i) and b(i) are learnable parameters; and i is the index of each stack.
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Residual Units

To be able to stack multiple CNN without incurring training degradation, L number of
residual units are used, where each unit denoted by ResUnit. Each residual unit defines
the mapping as follows:

Xi+1 = Xl + F(Xl; θ(l)), l = 1, ..., L (3.6)

where F is the residual function, where it contains two stacks of convolution with
ReLU, and θ(l) includes all learnable parameters in the lth residual unit.

Following the original implementation of the model, batch normalization is also
added before applying ReLU. The final part of each component is joined by a last con-
volution layer Conv2 where the dimensions of the outputs will match the original di-
mensions of the crowd flow tensor. The outputs for each component are denoted by
X

(L+2)
H , X(L+2)

D and X
(L+2)
W .

3.3.2 External Component

The external component considers exogenous knowledge which have been shown to
be crucial in influencing future crowd flows. Crowd flows during public holidays or
weekends can be considerably different compared to flows during normal work days
or weekdays. Weather also plays an important factor in determining the behavior of
crowd flows. Lagged weather conditions (i.e. weather at t − 1) is used to forecast the
crowd flows at time interval t.

3.3.3 Integrating Tweet Features

In this component, we extract features from real-time tweets that might be relevant in
helping explain for non-recurring crowd flows by introducing two new parameters,
denoted by (lag−, lead+ which represent a time interval window of tweets to be in-
cluded in the inputs. In particular, lag− refers to the number of time intervals before t
during which the tweet features are extracted, while lead+ refers to the number of time
intervals from t onwards. The size of the source tweet information window is thus
lag−+ lead+. For real-time prediction, it would be infeasible to consider any lead+ > 0
since it will be unknown at time interval t − 1. However, we included lead+ in our
experiments as we intend to analyze potential relationships that future tweets might
have with future crowd flows. The features that are extracted from tweets include:

Tweet Counts

The simplest way to represent the level of interests in a particular location is to simply
track the counts of tweets that refers to the region. Based on our hypothesis, if the tweet
counts from a particular grid cell is high at some specific time interval, crowd flows
from nearby cells should be higher than normal. The intuition is that if a particular
region gains interests as measured by tweet counts, crowds are more likely to flow
there. For example, as shown in Figure 3.6 and Table 3.3, there is a spike in the counts
of tweets that has specific mentions of “Jalan Besar Stadium”, which turns out to be
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referencing a large-scale soccer match with higher levels of induced crowd flows into
the region throughout the day. This feature is denoted as Tc ∈ RI×J .

FIGURE 3.6: Jalan Besar case study: Crowd flows in nearby regions dur-
ing a present large-scale event on 1 March 2013 around 7.30pm. Crowd
flows are higher than expected. Note: Blue lines represent daily mean

flows, while the red lines represent specific flows on that day.

Time Tweet text

17:38 Now at Jalan Besar stadium alr!!
17:34 Now going to jalan besar for ball picker
19:12 Finally the jam cleared. Now en route to Jalan Besar !!
19:34 Kickoff at the Jalan Besar Stadium - Albirex Niigata (S) 0-0 Home United!

#SLeague
19:50 A bit late but thrilled to be watching #ALB v #HUFC @Jalan Besar Sta-

dium

TABLE 3.3: Jalan Besar case study: sample of the relevant tweets that
reveal that a major event is ongoing at a particular location.

Tweet Tenses

Although the tweets are collected on a real-time basis, the tweets might not refer to
an event that is happening at present time. People might tweet about some event that
has already happened in the past, or will only happen in the future. For example, as
shown in Figure 3.7 and Table 3.4, there was a huge spike of tweets with mentions
of “Fort Canning” referring to a far future concert event that has no relation to the
present, and did not contribute to any anomalies in the crowd flows in the correspond-
ing nearby regions. Hence, solely basing on tweet counts to measure current inter-
ests level in a region without considering the time dimension might not be the most
accurate. Tenses information is derived from Parts-of-speech (PoS) tags of the root
verb. We take the tags <VBD> and <VBN> for past tense, <VBG>, <VBZ>, and <VBP> for
present tense, and <MD> for future tense, and take their counts. We use the Stanford
PoS tagger (Toutanova and Manning, 2000) to obtain the tags. This feature is denoted
as TT ∈ R3×I×J .
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FIGURE 3.7: Fort Canning case study: Crowd flows in nearby regions
on 29 June 2013. Crowd flows in that region on that day is comparable
to the daily average. Note: Blue lines represent daily mean flows, while

the red lines represent specific flows on that day.

Time Tweet text

16:30 @Ai_Arakawa FALL OUT BOY IS COMING TO SG. AUG 6 @FORT
CANNING . TICKETS AT SISTIC. HOSTED BY @LiveEmpire #FOBinSG

16:31 @qatarairways FALL OUT BOY IS COMING TO SG. AUG 6 @FORT
CANNING . TICKETS AT SISTIC. HOSTED BY @LiveEmpire #FOBinSG

... ... x 121

TABLE 3.4: Fort Canning case study: sample of the irrelevant tweets
mentions of a far future event on 6 August 2013

Tweet Sentiment

So far, we assumed that a high spike of interest at a particular location induces large
crowd flows around it. However, this assumption may not hold especially when the
interests are negative, and instead may suggest the opposite by reducing crowd flows
in the region. Examples of such events include a last-minute cancellation of an event
or outbreak of a disastrous event. For example, an undesirable major flooding inci-
dent happened in Paya Lebar, and was discussed heavily on Twitter. However, this
increased spike of tweet counts did not induce additional crowd flows into the region
but instead did the opposite (see Figure 3.8 and Table 3.5). This is intuitive as people
are less inclined to travel in regions that are negatively portrayed. Inversely, we also
expect crowd flows in positively interpreted regions to surge. Thus, we also explore
adding sentiment as an extra source of information to help measure the degree of such
scenarios. Tweet sentiment information is extracted using a simple counting of positive
and negative words based on a manually annotated sentiment lexicon by Hu and Liu
(2004). This feature is denoted as Ts ∈ R2×I×J .

For each of the sub-features, a sequence of matrices that corresponds to the tweets
information time window is prepared, and aggregated via simple summation to obtain
a single matrix. Finally, they are concatenated with the input sequence in the hourly
component to allow the model to also explore dependencies between tweets and the
crowd flow matrices. e choose to merge the tweet features with the hourly component’s
inputs because our underlying intention is to use tweets to model short-term effects to
crowd flows. These three features are specially designed to be simple, insensitive to
noise, and highly efficient to extract from tweets, as opposed to using more complex
methods such as neural networks to represent tweet information, which is important
for real-time prediction to be effective.
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FIGURE 3.8: Paya Lebar case study: Crowd flows in nearby regions dur-
ing a negatively-potrayed event on 28 April 2013 around 11am. Crowd
flows are lower than expected. Note: Blue lines represent daily mean

flows, while the red lines represent specific flows on that day.

Time Tweet text

10:58 Wah f*ck the road near paya lebar mrt flood like shit its fucking knee
deep in water !!!

10:59 wow rain till gt flood at paya
10:59 Oh my gosh... Paya Lebar is flooded. Literally.. Like shin-level.
11:09 Water level falls below 90%. High Flood Risk.11:09:13

#SgFlood„,#SgFlood

TABLE 3.5: Paya Lebar case study: sample of the relevant tweets that
reveal that a disaster is ongoing at a particular location.

3.3.4 Data Fusion

Finally, the outputs from the components, X(L+2)
H , X(L+2)

D , X(L+2)
W , and XExt are fused

together to produce a prediction tensor X̂t. The fusion is performed in two steps as
follows:

Parametric-matrix-based Fusion

The first step fused the first three historical observations components via a parametric-
matrix-based method to form XF with the following mapping:

XF = WW ◦X(L+2)
W + WD ◦X(L+2)

D + WH ◦X(L+2)
H (3.7)

where ◦ denotes the element-wise multiplication operator; WW , WD and WH are
learnable parameters that fine-tune the level of effect from the weekly, daily and hourly
component on each grid cell, allowing the model to specify the level of effect from each
past observation component on every region locally.

Fusion with External Component

The second step simply adds up the output from the first step with the external com-
ponent output, and applies a hyperbolic tangent function to the sum to transform the
output values to be in the range [−1, 1]. The function for this step is as follows:

X̂t = tanh(XF + XExt) (3.8)
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The model is then trained to minimize the Mean Squared Error (MSE) between the
predicted flow matrix and the true flow matrix. The MSE loss function is defined as:

L(θ) =
T∑
t

‖Xt − X̂t‖
2

2 (3.9)

where θ are all the learnable parameters in the model. Note that since not all grid cells
contain crowd flows due to non-traversable regions, we modify the loss function by
adding a mask to only calculate loss for specific regions where crowd flows exist.

3.4 Experiments

3.4.1 Settings

Baselines

Apart from ST-ResNet as our main baseline, we also compare the results with two other
simple baselines – historical average and persistence model. The historical average
model predicts the next inflow and outflow values by using the average of the past
observations in the same grid cell, and corresponding time interval in the week. The
persistence model simply takes the most recent observation of the crowd flows as the
next time interval prediction.

3.4.2 Preprocessing

We use the Min-Max normalization to scale the crowd flows values and the extracted
tweets features values into the range of [−1, 1], and [0, 1] for the wind speeds and tem-
perature.

Hyperparameters

We use Keras with Tensorflow as the backend to implement our models. The training
is done via back-propagation (Adam), with a fixed learning rate of 0.0002. The other
hyperparameters in the model are set as follows: L = 2, lH = 4, lD = 1, and lW = 1.
Batch size used is 32. The convolutions use 64 filters with kernel size of 3 × 3, while
Conv2 uses 2 filters with the same kernel size. The last four weeks (i.e. 28 days) in each
dataset is selected to be the test set, while the rest is the train set. From the train set,
10% validation is used as the development test set, and the remainder 90% is used to
train the model in the development phase. Until an early-stop is reached or up to 500
epochs, the development phase ends, and the training continues on with the full train
set evaluated with the original test set for 100 epochs.

3.4.3 Results and Discussion

The results of our extended models (i.e. with tweets information) with the tweet in-
formation time window fixed at (2−, 0+), and the baseline models (i.e. without tweets
information) are shown in Table 3.6. The error values reported in Table 3.6 are the
normalized Root Mean Square Error (RMSE) in percentages.
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TABLE 3.6: Comparison of the results amongst the baselines and ex-
tended models. Note: underlined: did not beat baseline; bold: best score

for dataset; †: statistical insignificant.

Model
Dataset

Average
VLD1 VLD2 VLD3 GSM

ST-ResNet (Main baseline) 3.1278 3.4302 3.4586 2.2520 3.0672
Historical average 5.2428 5.6838 5.0124 2.3585 4.5744
Persistence model 4.3876 4.2329 4.9451 4.9921 4.6391

ST-ResNet
+ Counts 3.1073 3.2965 3.2345 2.2369 2.9688
+ Tenses 3.1113 3.4238 3.2665 2.2581† 3.0149
+ Counts + Tenses 3.1459 3.3231 3.2294 2.2271 2.9814
+ Sentiment 3.1300 3.4255† 3.4609† 2.2441 3.0651
+ Counts + Sentiment 3.1984 3.2578 3.2498 2.3321† 3.0095
+ Counts + Tenses + Sentiment 3.1578 3.2455 3.3409 2.2072 2.9879

For every experiment in Table 3.6, except for the main baseline, we also conduct
a paired t-test using the error reduction values from the main baseline and each con-
tender model, denoted by bi and ci respectively, to test for statistical difference between
each matched prediction point i. Assuming that the difference in the error reduction
values are normally distributed, the null hypothesis is H0 : bi = ci and alternative
hypothesis is H1 : bi > ci. Those results marked with † are found to be statistically
insignificant which support that claim that it is no better than the main baseline.

Comparisons between Baselines

We observe that all of the models outperform the simple baselines, historical average
and persistence model, by a notable margin, signifying the effectiveness of ST-ResNet.
With error values just a little above 3%, it indicates that our main baseline is highly
competitive. It also implies that crowd flows in Singapore are easy to predict.

Effect of Tweet Counts

Extended models with tweet counts are able to reduce the errors by 3.28% on average.
The error reduction is small yet statistically significant margin, and this observation is
consistent for all datasets. This shows that tweets are indeed highly relevant to crowd
flow, and crucial to improve prediction performance.

Through our experiments, we also investigate whether information from tweets are
indeed unique from historical traffic patterns, so as to assess the value of tweet counts
to the crowd flow prediction problem. We addressed the following questions: do peo-
ple tweet only during peak hours when communing to and from work, and does the
tweet counts duplicate historical traffic pattern? If so, this might qualify any derived
information from tweets as any patterns found in tweets would only be a replication of
those found in traffic flows. Our findings from Figure 3.10 show a strong pattern that
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suggests that the total tweet counts diminish around the sleeping hours (2am-5am),
slowly increase along the day (from 5am onwards), and peaks during the night (11pm),
and it contains minimal correlation with the peak hour traffic patterns. Thus, we con-
clude that the tweet counts contain some useful information that does not overlap with
the historical crowd flows components.

Effect of Tweet Tenses and Sentiment

We observe that models with tweet tenses and/or sentiment have shown conditional
effectiveness across different datasets. Our experiments reveal a combination of datasets
which fetched positive outcomes and others that performed below the main baseline
(underlined in Table 3.6). Upon investigation, we attribute the cause to some degree
of feature misrepresentation from their original intentions, resulting in the treatment
of these features as noise. For instance, as shown in Figure 3.9 and Table 3.7, a high
negative sentiment count is detected within the tweets when a public train broke down
during an evening rush hour. We originally expected lower crowd flows near the af-
fected region, as explained in Section 3.3.3, however, the crowd flows increased instead.
This can be probably explained by a sudden surge of demand in private cars, taxi and
busses in the region which may have contributed to the increased crowd flows. We also
provide a few examples of tweets that are labelled as either past or future tense in Table
3.8. Similarly, as per earlier discussed, we deemed these tweets as irrelevant since they
are not in present tense. However, these tweets should be considered relevant as they
refer to some near-recent or near-future activities which can be useful for prediction.

FIGURE 3.9: Serangoon case study: Crowd flows during a time with
strong negative sentiment event on 19 June 2013 at 6pm. Crowd flows
are higher than expected. Note: Blue lines represent daily mean flows,

while the red lines represent specific flows on the day.

Time Tweet text

18:23 walao mrt breakdown at serangoon omg zzzz
18:29 F*cking train stalling at serangoon
18:41 Train broke down at ne line. Now waiting for bus at serangoon . But bus

stop overcrowded.
18:50 Human traffic at serangoon is insane
18:57 You gotta be f*cking kidding me. The entire serangoon mrt breakdown

TABLE 3.7: Serangoon case study: sample of the relevant tweets with
strong negative sentiment that reveal that a train breakdown at a partic-

ular station.
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FIGURE 3.10: Total Tweet counts vs. Total crowd flows from 1 March
2013 to 7 March 2013. Blue line denotes total Tweet counts. Red line

denotes total crowd flows.

Tense Tweet text

Weekend drive in the morning is the bestttt. I can go from hougang to
jurong in 10 mins hahaha

Future So there’s this dude in paya lebar square dancing while holding a
cigarette.
Dinner with Dad @Simpang Bedok . I can say this is the one of the best
Mee Goreng I’ve tasted in my ...

Just landed safely back at Changi.
I told the cab driver I want to go to Bedok . He told me ""sorry I don’t
take children"

Past Just posted a photo @Fort Canning Hill Park
Finally watched it and it was a great movie. #guardiansofthegalaxy
@Golden Village @Yishun

TABLE 3.8: Tenses feature misrepresentation; traffic-relevant tweets yet
it is in future or past tense.

Lag- Lead+

0 1 2 3

0 3.3389 3.2240 3.2765 3.2038
1 3.2474 3.2168 3.2045 3.2660
2 3.2128 3.2594 3.2547 3.2712
3 3.2092 3.1993 3.2267 3.2608

TABLE 3.9: Sensitivity analysis of various Tweet information time win-
dows using the ST-ResNet + Tweet Counts Model. Note: values are in

RMSE.
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Effect of Tweet Time Interval Window

We vary the tweet information time window (lag−, lead+) and report the results in Ta-
ble 3.9, where it lists the average RMSE amongst all VLD datasets for the corresponding
time interval window. The optimal time interval window is empirically determined to
be (3, 1). Intuitively, the larger the window size, the better the results of the prediction
should be, since more tweets are used. However, this pattern is only observed with
higher lag− which tends to achieve better result, as compared to when higher lead+

is used. This suggests that one limitation in using tweets in our setting, which is that
tweets do not contain information about future events if these events are unforeseeable
in the present, as such types of events can only induce people to tweet about it when it
happens then.

Reliability of Twitter as Data Source

It is well known that tweets contain large amount of noise as evidenced in examples
shown in above case studies. This accentuates the challenge in mining useful informa-
tion from tweets, and also risk noise being introduced to the predictive model. Further-
more, the tweets that we collected only cover certain grids in the map as we acknowl-
edge the sparsity of their spatial coverage, as shown in Figure 3.4. Even though the
tweets are collected based on locations that are deemed to be representative of well-
known clustered regions, this process also relies on local experts to handpick these
locations which could be non-trivial for bigger cities. One premise of this approach
also rely on the general usage of twitter adopted by the general population. The ac-
cessibility of mobile technologies and to social media might not be as widespread as a
highly connected city like Singapore.

3.5 Related Work

Similar to our motivations, He, Shen, et al. (2013) also used twitter to improve traffic
prediction linear regression model. In their approach, an optimization process is de-
signed to transform the semantics of the tweets into a salient traffic-indicator matrix.
We believe that similar approaches to encode the semantics of tweets into the predic-
tion model can be perform in our context and we leave it for future work. Liao, Zhang,
et al. (2018) also employ trending online crowd queries as additional input to improve
traffic speed prediction accuracy. In the literature, there have been several works that
utilize social media as a source of data to study traffic mobility patterns, which are well
summarized by Lv, Chen, et al. (2017), Xu, Li, and Wen (2018), and Ni et al. (2014).

Some works propose to use tweets, instead of traditional physical sensors such as
VLD and road cameras, to monitor real-time traffic. Carvalho et al. (2012) argue that the
latter methods are expensive, require high maintenance, provide poor spatial coverage
and usually inaccessible by the public, all of the disadvantages which the former is able
to overcome. Wang, Al-Rubaie, et al. (2014) further capitalize on geo-tagged tweets to
determine congestion along a specific highway in London. However, it is also well-
known that only a small proportion of tweets contain geo-tags and thus they might
not fully represent the level of social activity at their respective regions. Semwal et al.
(2015) and Shekhar et al. (2016) conducted correlations of traffic-related tweets with
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traffic congestion, instead of traffic flows. Besides, the key challenge as identified in
most studies above, is to reliably classify tweets as being traffic relevant, especially
due to the large presence of noise in unstructured natural language text. With the
added complexity of spatio-temporal granularity, it only hinders efforts to improve
the accuracy of the tweet relevance filtering process. Furthermore, existing studies are
often conducted in smaller scales, within specific space and time constraints. Our work
is closely related, as we also adopt tweets to represent additional traffic information,
but do away with the complex irrelevant tweet filtering step and instead use simple
features that are more insensitive to noise.

Liao, Zhang, et al. (2018) to encode additional information such as geographical
structure of the road network during large-scale social events, road intersections infor-
mation and trending online crowd queries

There has been a line of previous work that use tweets for predictions but applied
in other domains such as movies’ box office prediction (Asur and Huberman, 2010),
Distributed Denial-of-Service (DDoS) attacks prediction (Wang and Zhang, 2017), and
presidential election results prediction (Tumasjan et al., 2010). While these domains
do not face spatio-temporal challenges as pointed out by Zhang, Zheng, et al. (2018),
the prediction task in their domain is inherently more difficult as patterns are not as
predictable due to the presence of more complex interacting human behaviors, and tye
lack of reliable data indicators. Nevertheless, they demonstrate that tweets are good
source of information to predict crowd behaviors, and suggest that tweets are indeed
informative on telling human behaviors in different aspects of social life ranging from
entertainment and politics due to its nature to contain rich real-time information. Thus,
our findings are consistent with such existing investigations.

3.6 Summary

In this chapter, we explored the effectiveness of using tweets to crowd flow prediction
by extending upon an existing state-of-the-art crowd flow prediction model known as
ST-ResNet, adding various linguistic features from real-time tweets. These features in-
clude tweet counts, tweet tenses’ counts, and tweet sentiments’ counts. Through our
empirical experiments with two different datasets used to represent traffic flows in Sin-
gapore, we found that tweets are indeed useful to improving the prediction accuracy
up to 3.28% on average, and tested to be statistically significant. We also shared sev-
eral ways how tweets are related to crowd flows, with respect to the tweet features
extracted and the choice of time interval window chosen. The development of our
framework to use tweets as additional source of information for crowd flow prediction
is still very much work in progress. For future work, it could be a good direction to
look deeper into the contextual meaning that can be found in the tweets using more
advanced natural language processing methods, while also considering efficiency for
real-time prediction. Multilingual text processing can also be useful, especially in cities
like Singapore, where non-English languages such as Malay, Chinese and Singlish are
widely used, resulting in several misclassifications during feature extraction.
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Chapter 4

Understanding Integrated Gradients
with Smooth Taylor

4.1 Introduction

Deep neural networks have displayed remarkable success in various large-scale, real-
world and complex artificial intelligence tasks in computer vision (Huang, Liu, et al.,
2017; Ren et al., 2017; Tan and Le, 2019) and natural language processing (Edunov et al.,
2018; Johnson et al., 2017). However, these high performing non-linear neural models,
unlike traditional machine learning models, act like a black box which suffers from poor
input-to-output inference and interpretability. Due to the nature of how deep neural
network algorithms are designed, it is difficult to explain what or why an individual
input result in the model arriving at a particular output (Fan et al., 2020). This major
disadvantage hinders human experts to fully understand the basis and the reasoning
of every prediction a deep neural model makes for each input, limiting the extent of its
application in practice.

With the aim to better understand the complex input-to-output behavior of a deep
neural network, a number of previous work (Baehrens et al., 2010; Simonyan et al.,
2014; Zeiler and Fergus, 2014; Springenberg et al., 2015; Zhou et al., 2016; Zintgraf et
al., 2016; Binder et al., 2016; Shrikumar et al., 2017; Sundararajan et al., 2017; Mon-
tavon et al., 2017; Selvaraju et al., 2017; Samek, Montavon, et al., 2019) focus on the
problem of attribution. Attributions measure the contribution of the model’s output
explained in terms of its input variables. For instance, for image classification systems,
an attribution method assigns a relevance score to every pixel of the input image that
explains for the model’s predicted class. There are many applications where such an
ability to “explain" for a complex model’s decision is crucial. Attributions act as sup-
porting evidence to explain the rationale of a model’s decision. This helps to facilitate
the building of trust between humans and automated systems (Gilpin et al., 2019), and
encourage higher adoption of deep neural networks in practice, especially in high-risk
application areas. The importance of attribution is more apparent in view of the recent
vulnerability discoveries in deep neural networks against malicious and yet unnotice-
able to-the-human-eye adversarial attacks (Nguyen and Date, 2015; Moosavi-Dezfooli
et al., 2017).

Sundararajan et al. (2017) proposed Integrated Gradients (IG) as an attribution method
for deep neural networks, which unlike other methods (Zeiler and Fergus, 2014; Sprin-
genberg et al., 2015; Binder et al., 2016; Zhou et al., 2016; Shrikumar et al., 2017; Mon-
tavon et al., 2017; Selvaraju et al., 2017), is fully independent of the composition of the
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model’s structure, and can be easily implemented with access to just the input’s gra-
dients after back-propagation. As such, it is computationally efficient to compute, and
can be widely applied to various deep neural networks architectures and tasks.

However, IG require a selected baseline as a benchmark, which raises the question
on how such a baseline is to be chosen. In addition, just as with other gradient-based
methods (Baehrens et al., 2010; Simonyan et al., 2014), IG often create attribution maps
that are noisy which affects the ease of its interpretability. For example, compare the
saliency maps (attribution maps visualized by a 2D image) of IG (center two) with other
methods (Simonyan et al., 2014; Binder et al., 2016; Smilkov et al., 2017) in Figure 4.1,
which is based on a DenseNet (Huang, Liu, et al., 2017) with 121 layers pretrained for
the ImageNet image classification task. The noisiness of its explanations is visually
striking.

Those noise pixels seemingly scattered at random across the maps as shown in Fig-
ure 4.1 may indeed reflect the true behavior of the gradients of the deep neural model:
as the networks get deeper, the gradients across the input space fluctuate more sharply,
resembling white noise, which is described as the shattering gradient problem (Bal-
duzzi et al., 2017). To tackle the noisiness issue, Smilkov et al. (2017) proposed the
SmoothGrad technique, which uses a random sampling strategy around the input with
averaging of the obtained attributions to produce visually sharper attribution maps.

In this chapter, our contributions are as follows:

• We present SmoothTaylor as a theoretical concept bridge between IG and Smooth-
Grad. Unlike IG, it does not require a selected fixed baseline. Under additional as-
sumptions, SmoothTaylor is an instance of SmoothGrad. Regarding novelty, Smooth-
Taylor is derived from the Taylor’s theorem. Experimental results show that Smooth-
Taylor is able to produce higher quality attribution maps that are more sensitive
and less noisy as compared to IG.

• From the perspective of gradient shattering, we explain why SmoothGrad and
SmoothTaylor deteriorate with too small amount of added noise.

• We emphasize smoothness as a second quality measure for attribution and in-
troduce multi-scaled average total variation as a new evaluation measure for
smoothness of the attribution maps.

• We further propose adaptive noising for individual input samples to optimize
for either predictor sensitivity of the generated attribution map or the noisiness
of it. We show that it results in large improvements in performance compared to
constant noise levels.

• This chapter aims at a better understanding of existing gradient-based attribution
methods.

The rest of the chapter is organized as follows. Section 4.2 briefly describes IG and
SmoothGrad. In Section 4.3, we derive SmoothTaylor as a theoretical bridging concept.
Next, in Section 4.4, we conduct experiments by applying the attribution methods on a
large-scale image classification problem to generate attribution maps. These attribution
maps are quantitatively evaluated and compared. Adaptive noising is discussed in
Section 4.5. Lastly, we conclude this chapter in Section 4.6.
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FIGURE 4.1: Comparison of saliency maps computed by different at-
tribution methods. These saliency maps show the relative contri-
butions of each input pixel that explains for the model’s prediction.
Columns from the left: original input image; raw gradients; SmoothGrad;
IG with zero as the baseline (M = 50); IG with noise as the baseline
(N = 1); SmoothTaylor (σ =5e−1, R = 150); Layer-wise Relevance Prop-
agation. Setup: DenseNet121 image classifier pretrained for ImageNet.
Normalized absolute values are used to visualize the attribution maps

and values above 99th percentile are clipped.

4.2 Preliminaries

4.2.1 Integrated Gradients

Suppose one aims to explain the prediction of a deep neural network represented by
a function f for input x. The integrated gradient (Sundararajan et al., 2017) for the ith

dimension of the input is defined as follows:

IGi(x, z) := (xi − zi)×
∫ 1

α=0

∂f(z + α× (x− z))
∂xi

dα (4.1)

The gradient of f in the ith dimension is denoted by ∂f(x)
∂xi

, and z is a selected input
baseline. In practice, the path integral is usually approximated by a summation across
discrete small intervals m with M steps along the straightline path from input x to
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baseline z, as follows:

IGi(x, z) ≈ (xi − zi)×
1

M

M∑
m=1

∂f(z + m
M × (x− z))
∂xi

(4.2)

Note that the attributions of the IG method satisfy some desirable properties. First,
it satisfies implementation invariance since the computations are only based on the gra-
dients of f , and are fully independent on any aspects of the models. It also fulfils the
completeness axiom, which ensures that the attributions add up to the output difference
between input x and baseline z (i.e.

∑
i IGi(x, z) = f(x)− f(z)).

Thus, it is recommended to choose baseline z to be zero (with a near-zero score, i.e.
f(z) ≈ 0) to represent the absence of input features. This acts as a basis for comparison
and thus allows for the interpretation of the attributions to be a function of solely the
individual input features. For images, this is a fully black image, which is argued to
be a natural and intuitive choice. However, a black image is usually a statistical outlier
to most pretrained models, which makes explanations relative to implausible outlier
points seem irrelevant. Another disadvantage of using zero as the baseline is that in-
put features that are zero or near-zero will never appear on the attribution maps since
multiplier xi − zi will be almost close to zero. For example in Figure 4.1, saliency maps
of IG with zero as the baseline mostly fail to highlight objects of interests represented
by dark-colored pixels.

An alternative baseline with the same near-zero score property is also proposed
– uniform random noise. To address the issue of which random noise baseline to be
chosen, a valid approach is to draw different noise baselines z(n) to compute N IG
mappings, and average over them1:

IGnoise(x) =
1

N

N∑
n=1

IG(x, z(n)) (4.3)

This slight extension does seem to improve IG and result in more sensitive attribu-
tion maps with less noise, though there is still much room for improvement. Moreover,
it should be noted that uniform random noise is also an unseen outlier, thus it guides
to generate explanations that are no more meaningful than the zero baseline. Perhaps,
the need for this method to fix a baseline that is consistent enough for all inputs, and at
the same time does not deviate too far from the points in the dataset, is a fundamental
flaw in its design, as such a baseline may not exist.

4.2.2 SmoothGrad

While the original SmoothGrad technique (Smilkov et al., 2017) smooths the raw gradi-
ents over the input space, it can be viewed as a general procedure which computes an

1https://github.com/ankurtaly/Integrated-Gradients/

https://github.com/ankurtaly/Integrated-Gradients/
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attribution map by averaging over multiple attribution maps of an arbitrary gradient-
based attribution method (denoted asM) with multiple N ′ noised inputs:

SmoothGrad(x) =
1

N ′

N ′∑
n=1

M(x+ ε), ε ∼ N (0, σ′2) (4.4)

Gaussian noise with parameter σ′ is used to smoothen the input space of the attri-
bution method and construct visually sharper attribution maps. It is briefly discussed
in their paper that σ′ needs to be carefully selected to get the best result. If too small,
the attribution maps are still noisy; if too large, the maps become irrelevant.

4.3 SmoothTaylor

In this section, we explain the derivation of SmoothTaylor. Firstly, we discuss the mo-
tivation of our proposed improvement from the Taylor’s theorem approximation per-
spective. Any arbitrary differentiable function f can be approximated by Taylor’s the-
orem with the first order term while ignoring all other higher order terms:

f(x) ≈ f(z) +
∑
i

(xi − zi)
∂f(z)

∂xi
(4.5)

This yields an explanation, which describes how the output of the model f(·) in point x
is different from the output of the same model in point z. Notably, it is an explanation
for x relative to z. This raises the valid issue on how the point z should be chosen.

Secondly, in statistics, a valid method to deal with uncertainty is to compute an av-
erage over an uncertain quantity. In the case of uncertainty about which point z should
be chosen, the proper approach is to draw several roots z(r) (according to some method
which we defer the discussion till later) and average over them, so as to improve the
power of the approximation:

f(x) ≈ 1

R

R∑
r=1

[
f(z(r)) +

∑
i

(xi − z(r)i )
∂f(z(r)))

∂xi

]
(4.6)

Equation (4.6), in turn, is a discrete approximation for the integral (with S which has to
be a measurable set):

f(x) ≈
∫
z∈S

f(z) +
∑
i

(xi − zi)
∂f(z)

∂xi
dz (4.7)

We are now ready to outline our method. Based on the concepts described above,
the smooth integrated gradient in the ith dimension of an input x within a set of roots
z ∈ S is defined as follows:

SmoothTaylori(x) :=

∫
z∈S

(xi − zi)
∂f(z)

∂xi
dz (4.8)
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Equation (4.8) has two salient differences to IG from Equation (4.1). First, the expla-
nation point zi in the inner product (xi − zi) is part of the integral, whereas in IG, it is
outside of it. Second, the integration set S is not a path from x to some point z as it was
in IG.

Similarly, for the reason of efficient computation, the integral can also be approxi-
mated using a discrete summation over R multiple roots z(r):

SmoothTaylori(x) ≈ 1

R

R∑
r=1

(xi − z(r)i )
∂f(z(r))

∂xi
, z(r) ∼ S (4.9)

Equation (4.9) is derived from the averaged Taylor’s theorem approximation in
Equation (4.6) by choosing a set of roots such that the model output score difference be-
tween each root z(r) ∈ S and input x is almost close to zero (i.e. ∀r : f(x)−f(z(r)) ≈ 0).
As a result, the inner summation term f(z(r)) is canceled out with f(x), and the re-
maining terms can be explained as the sum of the smooth integrated gradients across
all dimensions. Note that this loosely satisfies the completeness axiom just like the IG
method. It also fulfils the implementation invariance property.

The next issue is to decide on a suitable method to generate the roots z(r). If one is
interested in classification or segmentation as pixel-wise classification, then one would
want to choose the set S to be a set of points where the prediction output class switches.
However searching these points on the training dataset might result in roots which are
too far away from the input x to be explained, which will impact the quality of the
Taylor approximation. One alternative is to seek for a random set of points sufficiently
close to x, so that the quality of the Taylor approximation is acceptable, and also suffi-
ciently far away, so that the noise from the gradient shattering effect in deep networks
(Balduzzi et al., 2017) can be canceled out by averaging over many z from many differ-
ent linearity regions. A simple approach, inspired by SmoothGrad, is to add a random
variable ε to input x, where ε can be drawn from a Gaussian distribution with standard
deviation σ being the noise scaling factor:

z(r) = x+ ε,where ε ∼ N (0, σ2) (4.10)

The choice of the σ value should be carefully selected, and it is further discussed in
Section 4.5. This follows the principle of choosing z(r) to be close to x and also suffi-
ciently far away, so that the need for a good Taylor approximation and averaging effect
of the noise in the gradients can be balanced.

Theorem: If the roots in SmoothTaylor are chosen as per Equation (4.10), then the dis-
crete version of SmoothTaylor as given in Equation (4.9) is a special case of SmoothGrad
withM = ∇f(x+ ε) · ε.

This theorem does not hold for other choices of the set S in Equation (4.9), thus
SmoothTaylor defines an algorithm class of its own.

SmoothTaylor offers an alternative formulation to IG, where the selection of a fixed
baseline is not required. The above theorem establishes SmoothTaylor with a choice of
roots as in Equation (4.10) as a theoretical bridging concept between IG and SmoothGrad.
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FIGURE 4.2: Evaluation metrics curves; the lower the curve the better.
Right: Legends. Top row: Perturbations curves. Bottom row: Multi-
scaled TV curves. Left column: Based on DenseNet121. Right column:

Based on ResNet152.

4.4 Experiments

We apply SmoothTaylor and IG (Sundararajan et al., 2017) attribution techniques, and
compare their results. We choose to analyze them on the image classification task. The
goal is to compare the quality of the attribution maps computed by these two methods.
To encourage reproducibility, we publicly release our source code2. Here, we describe
our experiment setup and evaluation metrics.

4.4.1 Setup

We use the first 1000 images from the ILSVRC2012 ImageNet object recognition dataset
(Russakovsky et al., 2015) validation subset as the scope of our experiment. It is a 1000
multi-class image classification task, with each image preprocessed to be the size of
224 × 224 pixels. We choose two deep neural image classifier models, DenseNet121
(Huang, Liu, et al., 2017) and ResNet152 (He, Zhang, et al., 2015), that are both pre-
trained on the ImageNet dataset to apply the attribution methods. We compute the
attributions with respect to the function of the predicted class for each input image
regardless of the ground truth label. Therefore, the attribution process is entirely unsu-
pervised.

2https://github.com/garygsw/smooth-taylor

https://github.com/garygsw/smooth-taylor
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4.4.2 Hyperparameters

For the SmoothTaylor method, we vary the parameter values for the number of roots R
to be 100, 150, and 200, and the noise scaling factor σ to be 3e−1, 5e−1, and 7e−1. The
magnitudes of the noise scaling factor are decided to be roughly in the range of the
average values of the inputs after normalization. For IG, we choose total steps M to be
50, and vary the type of baselines used. We use the zero (black image) baseline, and
random uniform noise baselines with different samples sizes N to be 1, 5, 10, and 20.

4.4.3 Evaluation Metrics

Sundararajan et al. (2017) argued against empirical methods for evaluating attribution
methods, and thus decided to rely on an axiomatic approach to determine the qual-
ity of an attribution method. However, axiom sets might be incomplete, and for a
data-driven science, a quantitative evaluation is often aligned with the goals. Further-
more, there are limitations to qualitative evaluation of attribution maps due to biases
in human intuition towards simplicity whereas deep neural models which might be
over-parametrized and thus of high complexity. Therefore, in our experiments, we use
the following two quantitative metrics:

Perturbation Approach

One such metric suggested by Samek, Binder, et al. (2017) relies on selecting the top
salient regions of pixels in the input image by attribution and successively replacing
them with random noise (also known as pixel perturbation), and then measuring the
drop in model output scores. A higher score drop signifies a more sensitive attribution
method, since the attributions are able to better identify the salient parts of the input
that explain the model’s output.

We describe our pixel perturbation evaluation procedure formally as follows. First,
we use a sliding local window of kernel size k×k in the input image space to find an or-
dered sequenceO = (r1, r2, ..., rL) that contains the top-Lmost salient non-overlapping
regions. The sorting of the regions is based on the average absolute attribution values
of the pixels’ location within each kernel window, from the highest to lowest (most
relevant first). A high average absolute attribution value in a region rl denotes a high
presence of evidence that supports the model’s prediction.

Second, we follow the sequence of ordered regions in O to apply the perturbations
on. Let g(x, r) be a function which performs the perturbation on some input image
x at region r, where information in that region is removed by the replacement of the
value of its pixels with random values drawn from a uniform distribution across the
valid input value range. The function g is then successively applied starting with the
original input image x(0) = x. The input image for the next step x(l) is iteratively
updated after perturbation at step l for L times:

∀ 1 ≤ l ≤ L : x(l) = g(x(l−1), rl) (4.11)
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At each step l, we consider P number of different random perturbation samples and
compute the mean score ȳ(l):

ȳ(l) =
1

P

P∑
p=1

f(x(l−1)
(p)

) (4.12)

The perturbation with the median output score is selected as the actual perturbation
to update. To quantitatively measure the strength of an attribution method, we look at
how much these mean output scores drop with steps l. That can be quantified by taking
the Area Under the Perturbation Curve (AUPC) (see Figure 4.2 (top)) after normalizing
each mean score ȳ(l) at each step l with the original score f(x), and averaged over all
images in the dataset. Throughout our experiments, we use kernel size k = 15, number
of perturbations L = 30, and perturbation sample size P = 50.

Average Total Variation

We use Average Total Variation (ATV) as the second evaluation metric to measure the
smoothness or the total amount of noise of each pixel with its local neighbors. We
consider a saliency map S as vector of size h× w to represent every pixel. Taking only
absolute values, a min-max normalization (with values above 99th percentile clipped
off) is applied on an attribution map to construct a saliency map. The ATV of S is
computed as follows:

ATV (S) =
1

h× w
∑
i,j∈N

‖Si − Sj‖p (4.13)

Here, N defines the set of pixel neighbourhoods (adjacent horizontal and vertical pix-
els) and ‖ · ‖ is the `p norm. We use the established `1-norm in our experiments.

In addition, we construct Gaussian pyramids (Burt and Adelson, 1983) on the saliency
maps by repeatedly scaling their dimensions down by 1.5 and applying a Gaussian
smoothing filter to remove information. This process is repeated for each saliency map
until the size of the map is smaller than 30 × 30 pixels. We then compute the ATV of
the scaled and blurred saliency maps at each step – we call them multi-scaled ATVs.
Subsequently, after averaged over all images, we take the Area Under the multi-scaled
ATVs curve (AUTVC) (see Figure 4.2 (bottom)) as the measure quantity to evaluate the
quality of an attribution method.

4.4.4 Results

We compute the attribution maps using a few different attribution methods based on
two pretrained image classifiers on the ImageNet dataset. Examples of these attribution
maps are visualized as saliency maps in Figure 4.1.

Qualitatively, we can observe that SmoothTaylor produces visually sharper saliency
maps as compared to IG. In addition, they are better at highlighting distinctive regions
that explain the model’s prediction. While it is not the best method that produces the
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TABLE 4.1: Area under the curves results.
Note: Lower AUPC and AUTVC is better.

Attribution Method
Image Classifier Model

DenseNet121 ResNet152

IG
baseline N AUPC AUTVC AUPC AUTVC

zero - 23.63 1.52 22.87 1.51

noise

1 21.51 1.62 21.05 1.54
5 21.54 1.52 20.99 1.43
10 21.46 1.45 21.02 1.37
20 21.43 1.39 21.02 1.32

SmoothTaylor DenseNet121 ResNet152

σ R AUPC AUTVC AUPC AUTVC

3e−1
100 21.24 1.28 20.83 1.20
150 21.19 1.24 20.79 1.16
200 21.13 1.22 20.78 1.14

5e−1
100 21.25 1.23 21.00 1.14
150 21.20 1.19 20.95 1.10
200 21.13 1.16 20.86 1.07

7e−1
100 21.39 1.20 21.37 1.08
150 21.30 1.15 21.32 1.04
200 21.30 1.12 21.14 1.01

TABLE 4.2: Area under the curves results for
SmoothTaylor with extreme hyperparameter values.

Note: Lower AUPC and AUTVC is better.

SmoothTaylor Image Classifier Model

Hyperparameters DenseNet121 ResNet152

σ R AUPC AUTVC AUPC AUTVC

5e−1 10 21.74 1.55 21.43 1.43

1e−4 100 23.45 1.79 23.00 1.55
1e−3 100 23.60 1.53 23.14 1.48
1e−2 100 23.90 1.57 23.46 1.23
1e−1 100 22.03 1.43 21.44 1.22

1 100 21.88 1.17 22.16 1.04
2 100 23.54 1.19 24.48 1.27

least noise or the most sensitivity (see saliency maps produced by Layer-wise Rele-
vance Propagation (LRP) (Binder et al., 2016)), SmoothTaylor offers ease of implementa-
tion and fulfils the two current fundamental axioms of an attribution method.
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TABLE 4.3: Area under the curves results with Adaptive Noising.
Note: Lower AUPC and AUTVC is better.

SmoothTaylor Image Classifier Model

Hyperparameters DenseNet121 ResNet152

σ R AUPC AUTVC AUPC AUTVC

Adaptive-AUPC 150 19.55 1.14 19.30 1.05
Adaptive-AUTVC 150 22.14 0.99 22.52 0.85

Next, we discuss the results using quantitative evaluation measures. A summary of
the experimental results is shown in Table 4.1 with the AUPC and AUTVC values for
each experiment run. The Simpson’s rule is used to compute the area under the curves.
We analyze the results based on two objectives – sensitivity and noise level, and also
compare the results based on two different classifier models.

Sensitivity

As observed in Figure 4.2 (top), when compared to IG, the attribution maps of Smooth-
Taylor are able to cause a larger classification score drop as perturbation step increases.
Expectedly, the AUPC values for SmoothTaylor are also lower, showing that SmoothTay-
lor is more sensitive to relevant explanations points in the input space than IG. The
averaged IG with noise baselines are shown to have large improvements; almost close
to the performance of SmoothTaylor at our chosen hyperparameters, though still a little
worse. Their improvements also produce diminishing marginal returns as N increases
beyond more than 5. On closer inspection with Table 4.1, it shows that our choice for
σ values did not produce any significant effect on the AUPC values, which is worth
investigating further in Section 4.4.5. However, the AUPC values clearly decrease as
R increases. This is expected as the “smoothing" effect is greater when we draw more
roots, resulting in a statistically better representation of z which improves the power of
the Taylor approximation.

Noise level

The SmoothTaylor method clearly generates attribution maps that are much less noisy
than IG. As seen in multi-scaled ATV curves in Figure 4.2 (bottom), all the curves for
SmoothTaylor are lower that the curves for IG. We also compare the effect of σ and R on
the noisiness of the attribution maps of SmoothTaylor. First, the AUTVC values decrease
asR increases. This is also expected due to the increase “smoothing" effect. Second, the
AUTVC values seem to increase as σ increases. However, we believe that this relation-
ship is not monotonically true, as the selection of our σ values may be too low across
all images in the dataset. We discuss this further in Section 4.4.5.

DenseNet121 vs. ResNet152

The sensitivity improvements in the perturbation curves by SmoothTaylor over IG is
noticeably lesser for ResNet152 as compared to DenseNet121. One hypothesis is that
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FIGURE 4.3: Evaluation metrics curves for the study of the impact
of varying the noise hyperparameter; the lower the curve the bet-
ter. Top row: Perturbation curves. Bottom row: Multi-scaled TV
curves. Left column: Based on DenseNet121. Right column: Based on

ResNet152.

the gradients from ResNet152 are less noisy to begin with, since residual networks are
shown to have reduced shattering gradients effect. Thus, with more reliable gradients
to explain for the model’s prediction, the effectiveness of smoothing is also reduced.

4.4.5 Noise Hyperparameter Sensitivity Analysis

We choose a range of σ values as high as 2 and as low as 1e−4, while fixing R to be
100. The effects of different values of the noise scale parameter for SmoothTaylor are
displayed in Figure 4.3, and its results are summarized in Table 4.2.

We can observe that for too small noise choices such as 1e−4 or 1e−3, the AUPC sen-
sitivity is lower than for choices in the order of 1e−1. This can be explained from the
effect of gradient shattering in deep networks: when the gradient has a large compo-
nent resembling white noise, as observed by Balduzzi et al. (2017), then using averages
is a statistically reasonable attempt to remove the white noise component. Rectified
Linear Unit (ReLu) networks consist of zones with locally linear predictions – see Fig-
ure 3 in the paper of Novak et al. (2018) for a clear illustration of this effect.

The gradient is constant within each such zone. Above averaging requires to sam-
ple the gradient at many different local linearity zones around the sample of interest x.
In particular averaging requires zi to be outside of the linearity zone in which x is in.
This explains why a very small amount of noise will not result in an effective averaging
of white noise, as most of the samples zi would just stay in the local linearity zone of x
and fail to sample different gradient values.
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Algorithm 1: Adaptive Noising
Parameters: Max. iterations imax, learning rate α, learning decay γ, max. stop

count smax
Input : Input x, root size R, model f
Output : Optimal σ∗ value
begin

σ ← 1
N

∑
|x|;

AUC← ComputeAUC(x,R, f, σ);
i← 1; s← 0; σ∗ ← σ; AUC∗ ← AUC;

while i ≤ imax do
AUCs ← ComputeAUC(x,R, f, |σ + α|);
if AUCs > AUC then

σ ← |σ − α|;
AUCs ← ComputeAUC(x,R, f, σ);

else
σ ← |σ + α|;

end

if AUCs > AUC then
if s ≤ smax then

α← α ∗ γ; s← s+ 1;
else

break
end

else
s← 0;
if AUCs < AUC∗ then

AUC∗ ← AUCs; σ∗ ← σ;
end

end
AUC← AUCs; i← i+ 1;

end
end

The size of the local linearity zone is sample-dependent (Novak et al., 2018). This
observation supports the claim that the noise scale σ needs to be carefully calibrated
within a certain range (i.e. it cannot be too small or too big) for every individual sample
x in order for the attribution maps of SmoothTaylor to be of high quality. Therefore,
based on this observation, we go further and propose an adaptive improvement to
SmoothTaylor in the next section.

4.5 Adaptive Noising

Ideally, the value of noise scale σ should depend on each individual input, and not gen-
erally fixed to all inputs. Thus, we propose an adaptive noising technique to search for
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an optimal noise scale value for each input, so as to optimize the SmoothTaylor method.
We adopt an iterative heuristic line search approach to design our algorithm. The

goal is to find an optimal value for σ such that the attribution maps can be the most
sensitive or least noise (quantified by AUPC or AUTVC respectively). As such, while
fixing R, we search for σ∗ for each input such that the AUPC or AUTVC of its attribu-
tion map is minimized. We describe our algorithm in Algorithm 1.

In our proposed iterative optimization procedure, we search for σ∗ within maxi-
mum iterations of imax. We include an early stopping mechanism with maximum stop
count smax. At each iteration, σ is updated with learning rate α which direction de-
pends on a line search. The learning rate is reduced by a factor learning decay γ < 1
whenever the current iteration’s Area Under Curve (AUC) is greater than the previous
one. In our experiment, we use R = 150 and set maximum iterations imax = 20, max-
imum stop count smax = 3, learning rate α = 0.1, learning decay γ = 0.9, and use the
same setup from the AUC computation in our earlier experiments.

We report the results from using adaptive noising in Table 4.3 and compare with the
results from previous experiment runs. With adaptive noising, we are able to obtain the
best AUPC or AUTVC values among all runs. However, it is to be noted that computing
AUPC is computationally expensive and slow while computing AUTVC is much faster.
The results conclusively show that SmoothTaylor with adaptive noising is preferable
over constant noise injection.

4.6 Summary

Explaining for all deep neural model decisions is a huge challenge given the vast tax-
onomy of model types and scope of problems. Thus it is crucial to find a simple at-
tribution method that is easily applied to various model architectures so as to encour-
age widespread usage. In this chapter, we bridge IG and SmoothGrad and proposed
SmoothTaylor from the Taylor’s theorem perspective. In our experiments, we also in-
troduce multi-scaled average total variation as a new measure for noisiness of saliency
maps. We further proposed adaptive noising as a hyperparameter tuning technique to
optimize our proposed method’s performance. From the experimental results, Smooth-
Taylor is able to produce attribution maps that are more relevance-sensitive and with
much less noise as compared to IG .



45

Chapter 5

Conclusion

This concluding chapter presents some preliminary work on the application of Explain-
able Artificial Intelligence (xAI) methods on traffic status prediction in Section 5.1, dis-
cuss directions of future work in Section 5.2, and finally provides an overall summary
on the thesis in Section 5.3.

5.1 Preliminary Applications

We apply some faster to implement xAI methods on a network-based traffic status
prediction task, specifically a model based on Graph Convolutional Network (GCN)
known as Diffusion Convolutional Recurrent Neural Network (DCRNN) (Li, Yu, et al.,
2018). We choose this traffic prediction tasks and deep learning model as little research
work have been done in this area. The dataset chosen for our study is the METRA-LA
dataset (Jagadish et al., 2014), which contains time series data of traffic speeds across
207 speeds sensors installed in Los Angeles city. The goal of DCRNN is to predict a
sequence of future traffic speeds across all 207 nodes for T periods, given the previous
traffic speeds for the last T periods. We use parameter value T = 12 in our experiment,
with a period interval of 5 minutes.

We apply our proposed SmoothTaylor and Integrated Gradients (IG) on DCRNN and
visualize the global feature importance both spatially (via heatmaps) and temporally
(via bar graphs) as shown in Table 5.1. From the visualizations, we are able to observe
sensor locations that are better at explaining the prediction output. Nodes with darker
colors indicate locations with sensors’ value that is more sensitive to the prediction
output. Visually, SmoothTaylor is clearly able to create more contrast in the heatmap as
compared to IG, reinforcing its superiority.

From the spatial heatmap generated by SmoothTaylor in Table 5.1 (top), we deduce
a few useful interpretations. First, nodes along the major highway US 101 (northwest
to southeast of map) are mostly colored red, highlighting them as critical input nodes
for model to make its prediction. This makes sense since the highway leads further
south to the East Los Angeles Interchange, the world’s busiest freeway interchange.
This highway contains huge amount of traffic flows in and out of the California state.
Thus, traffic speeds from sensors along this highway are expected to be acutely telling
of future traffic speeds due to the sheer volume of vehicles traveling on this road link.
Second, on the other hand, nodes along roads surrounding Glendale (eastern side of
map), a suburb city of Los Angeles, are mostly colored blue. This suggests that they are
of less critical importance in the model’s prediction function relative to other nodes.
This may be explained by the smaller population of the city, and the more regular
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TABLE 5.1: Visualizations of global feature importance generated using
SmoothTaylor and IG for both spatial and temporal features.

traffic patterns by its inhabitants that does not provide much useful discriminatory
information to the prediction function. Third, sensor input values of nodes nearer to
road intersections are more useful than nodes along straight roads. This also makes
sense as congestion often occur around intersections as they are often bottlenecks in
road networks.

From the temporal graphs generated in Table 5.1 (bottom), we observe that periods
closer to the present (prediction time) are given higher attribution values as compared
to periods further away. This effect is more prominent for SmoothTaylor as compared
to IG. This observation suggests that the propagation of traffic speeds into the future
is mostly short-term dependent, with historical values from 5 to 15 minutes ago being
most important relative to values from older periods.

5.2 Future Works

In this section, we discuss potential future projects that can be derived from this thesis.
From the Twitter-informed crowd flow prediction study in Chapter 3, there is good

potential for further improvement if more advanced natural language processing tech-
niques are employed to extract useful information from text to improve short-term
traffic prediction. One major challenge is the handling of huge amount of noise present
in Tweets which require additional preprocessing steps such as spams filtering, parsing
multiple languages, localization filtering etc.

Perhaps, we can also consider extracting additional information from other web
platforms in search of relevant information that is useful for traffic prediction. For
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example, some useful information that can be extracted include events detection, traffic
jams reporting, car park availability, road maintenance schedules etc. There is so much
more information that can be utilized as additional external inputs to improve model
performance or better explain the models’ behaviors. However, we must also be wary
of fake/false information that are commonly found in the web. Sufficient effort must
be done to choose the data sources wisely, or perform some fact checking to ensure the
validity/integrity of the extracted information.

From the SmoothTaylor study in Chapter 4 and some preliminary work done in Sec-
tion 5.1, we can suggest numerous ways to explore further on how xAI can be better
applied to traffic prediction. Further research on new ways to visualize the outputs
of the interpretation tools is useful, as it is currently difficult to visualize the complex
spatio-temporal dependencies using ordinary visualization tools. Of course, there are
also many opportunities to implement the xAI methods on other types of deep neural
networks for various other traffic-related tasks, so as to evaluate its general applica-
bility, and strengths and weakness in various context. Furthermore, a data-driven ap-
proach to evaluate the attributions heatmaps, especially when there is a heterogeneous
data source is also an unexplored research topic and thus a part of future work.

5.3 Summary

This thesis explores the topic on explaining deep learning models for the traffic pre-
diction, which is not yet commonly explored in the literature. While it is reassuring
to see the state-of-the-art performance of traffic prediction continually being bested by
newer deep learning models work, we cannot be too overconfident that these models
can perform well in real-life applications. Deep learning models are renowned to be
highly difficult to interpret. The link between the input and output cannot be observed
directly without xAI methods to interpret them.

We provide a brief literature review in Chapter 2 on machine learning methods spe-
cific to traffic prediction, various traffic prediction problems, and xAI methods for deep
learning in general. Then in Chapter 3, we explore the value of augmenting Twitter as
an additional data source in a crowd flow prediction deep neural network model, ST-
ResNet. From the experiments, we show that Twitter do contribute to the improvement
of the prediction accuracy but with some limitations, though much more can be ex-
plored to better exploit the rich amount of information from social media in its natural
language form. Through the experiments, we also conduct several case studies to show
how tweets can be used to also explain for certain irregular crowd flows, highlighting
the usefulness of tweets in the context of traffic prediction. Next in Chapter 4, we take
a more generic view on attribution methods that are highly applicable and agnostic to
the architecture of deep learning models. We focus deeply on a particular attribution
method known as IG. Drawing inspiration from another method known as SmoothGrad,
we propose a novel attribution method known as SmoothTaylor. We test the methods
with experiments on the ubiquitous image classification task, and show that it is able
to better explain input-to-output behavior of deep neural networks as compared to the
other model-agnostic gradient-based attribution methods. Finally, we conclude in this
final chapter by discussing some preliminary work and directions on future work.
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